TPTP Problem File: SWV864-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV864-1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Software Verification
% Problem : Hoare logic with procedures 317_1
% Version : Especial.
% English : Completeness is taken relative to completeness of the underlying
% logic. Two versions of completeness proof: nested single recursion
% and simultaneous recursion in call rule.
% Refs : [Nip10] Nipkow (2010), Email to Geoff Sutcliffe
% : [BN10] Boehme & Nipkow (2010), Sledgehammer: Judgement Day
% Source : [Nip10]
% Names : Hoare-317_1 [Nip10]
% Status : Unsatisfiable
% Rating : 0.20 v9.0.0, 0.15 v8.2.0, 0.19 v8.1.0, 0.16 v7.5.0, 0.21 v7.4.0, 0.18 v7.3.0, 0.17 v7.1.0, 0.08 v7.0.0, 0.20 v6.4.0, 0.13 v6.3.0, 0.18 v6.2.0, 0.30 v6.1.0, 0.43 v6.0.0, 0.30 v5.5.0, 0.40 v5.3.0, 0.44 v5.2.0, 0.38 v5.1.0, 0.35 v5.0.0, 0.36 v4.1.0
% Syntax : Number of clauses : 29 ( 8 unt; 2 nHn; 24 RR)
% Number of literals : 53 ( 18 equ; 28 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 1 prp; 0-4 aty)
% Number of functors : 17 ( 17 usr; 9 con; 0-5 aty)
% Number of variables : 74 ( 15 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%------------------------------------------------------------------------------
cnf(cls_id__apply_0,axiom,
c_Fun_Oid(V_x,T_a) = V_x ).
cnf(cls_evaln__elim__cases_I1_J_0,axiom,
( V_t = V_s
| ~ c_Natural_Oevaln(c_Com_Ocom_OSKIP,V_s,V_n,V_t) ) ).
cnf(cls_evalc__elim__cases_I4_J_1,axiom,
( c_Natural_Oevalc(V_c2,c_Natural_Osko__Natural__Xevalc__elim__cases__4__1(V_c1,V_c2,V_s,V_t),V_t)
| ~ c_Natural_Oevalc(c_Com_Ocom_OSemi(V_c1,V_c2),V_s,V_t) ) ).
cnf(cls_evalc__elim__cases_I4_J_0,axiom,
( c_Natural_Oevalc(V_c1,V_s,c_Natural_Osko__Natural__Xevalc__elim__cases__4__1(V_c1,V_c2,V_s,V_t))
| ~ c_Natural_Oevalc(c_Com_Ocom_OSemi(V_c1,V_c2),V_s,V_t) ) ).
cnf(cls_evaln_OSemi_0,axiom,
( c_Natural_Oevaln(c_Com_Ocom_OSemi(V_c0,V_c1),V_s0,V_n,V_s2)
| ~ c_Natural_Oevaln(V_c1,V_s1,V_n,V_s2)
| ~ c_Natural_Oevaln(V_c0,V_s0,V_n,V_s1) ) ).
cnf(cls_eval__eq_0,axiom,
( c_Natural_Oevaln(V_c,V_s,c_Natural_Osko__Natural__Xeval__eq__1__1(V_c,V_s,V_t),V_t)
| ~ c_Natural_Oevalc(V_c,V_s,V_t) ) ).
cnf(cls_com_Osimps_I3_J_1,axiom,
( c_Com_Ocom_OSemi(V_com1,V_com2) != c_Com_Ocom_OSemi(V_com1_H,V_com2_H)
| V_com2 = V_com2_H ) ).
cnf(cls_com_Osimps_I3_J_0,axiom,
( c_Com_Ocom_OSemi(V_com1,V_com2) != c_Com_Ocom_OSemi(V_com1_H,V_com2_H)
| V_com1 = V_com1_H ) ).
cnf(cls_evaln__elim__cases_I4_J_1,axiom,
( c_Natural_Oevaln(V_c2,c_Natural_Osko__Natural__Xevaln__elim__cases__4__1(V_c1,V_c2,V_n,V_s,V_t),V_n,V_t)
| ~ c_Natural_Oevaln(c_Com_Ocom_OSemi(V_c1,V_c2),V_s,V_n,V_t) ) ).
cnf(cls_evaln__elim__cases_I4_J_0,axiom,
( c_Natural_Oevaln(V_c1,V_s,V_n,c_Natural_Osko__Natural__Xevaln__elim__cases__4__1(V_c1,V_c2,V_n,V_s,V_t))
| ~ c_Natural_Oevaln(c_Com_Ocom_OSemi(V_c1,V_c2),V_s,V_n,V_t) ) ).
cnf(cls_evaln_OSkip_0,axiom,
c_Natural_Oevaln(c_Com_Ocom_OSKIP,V_s,V_n,V_s) ).
cnf(cls_com_Osimps_I13_J_0,axiom,
c_Com_Ocom_OSemi(V_com1_H,V_com2_H) != c_Com_Ocom_OSKIP ).
cnf(cls_evalc__evaln_0,axiom,
( c_Natural_Oevaln(V_c,V_s,c_Natural_Osko__Natural__Xevalc__evaln__1__1(V_c,V_s,V_t),V_t)
| ~ c_Natural_Oevalc(V_c,V_s,V_t) ) ).
cnf(cls_com_Osimps_I12_J_0,axiom,
c_Com_Ocom_OSKIP != c_Com_Ocom_OSemi(V_com1_H,V_com2_H) ).
cnf(cls_com__det_0,axiom,
( V_u = V_t
| ~ c_Natural_Oevalc(V_c,V_s,V_u)
| ~ c_Natural_Oevalc(V_c,V_s,V_t) ) ).
cnf(cls_evalc_OSkip_0,axiom,
c_Natural_Oevalc(c_Com_Ocom_OSKIP,V_s,V_s) ).
cnf(cls_id__def_0,axiom,
c_Fun_Oid(v_x,t_a) = v_x ).
cnf(cls_state__not__singleton__def__raw_0,axiom,
( v_sko__Hoare__Mirabelle__Xstate__not__singleton__def__raw__1 != v_sko__Hoare__Mirabelle__Xstate__not__singleton__def__raw__2
| ~ c_Hoare__Mirabelle_Ostate__not__singleton ) ).
cnf(cls_state__not__singleton__def_1,axiom,
( c_Hoare__Mirabelle_Ostate__not__singleton
| V_x = V_xa ) ).
cnf(cls_single__stateE_0,axiom,
( v_sko__Hoare__Mirabelle__Xsingle__stateE__1(V_t) != V_t
| ~ c_Hoare__Mirabelle_Ostate__not__singleton ) ).
cnf(cls_evalc_OSemi_0,axiom,
( c_Natural_Oevalc(c_Com_Ocom_OSemi(V_c0,V_c1),V_s0,V_s2)
| ~ c_Natural_Oevalc(V_c1,V_s1,V_s2)
| ~ c_Natural_Oevalc(V_c0,V_s0,V_s1) ) ).
cnf(cls_state__not__singleton__def_0,axiom,
( v_sko__Hoare__Mirabelle__Xstate__not__singleton__def__1 != v_sko__Hoare__Mirabelle__Xstate__not__singleton__def__2
| ~ c_Hoare__Mirabelle_Ostate__not__singleton ) ).
cnf(cls_evalc__elim__cases_I1_J_0,axiom,
( V_t = V_s
| ~ c_Natural_Oevalc(c_Com_Ocom_OSKIP,V_s,V_t) ) ).
cnf(cls_evaln__evalc_0,axiom,
( c_Natural_Oevalc(V_c,V_s,V_t)
| ~ c_Natural_Oevaln(V_c,V_s,V_n,V_t) ) ).
cnf(cls_eval__eq_1,axiom,
( c_Natural_Oevalc(V_c,V_s,V_t)
| ~ c_Natural_Oevaln(V_c,V_s,V_x,V_t) ) ).
cnf(cls_conjecture_0,negated_conjecture,
c_Hoare__Mirabelle_Ostate__not__singleton ).
cnf(cls_conjecture_1,negated_conjecture,
~ c_Natural_Oevalc(v_c,v_x,v_xa) ).
cnf(cls_conjecture_2,negated_conjecture,
( V_Z_H = v_xa
| c_Natural_Oevalc(v_c,v_x,v_xb(V_Z_H)) ) ).
cnf(cls_conjecture_3,negated_conjecture,
( V_Z_H != v_xb(V_Z_H)
| V_Z_H = v_xa ) ).
%------------------------------------------------------------------------------