TPTP Problem File: SWV818-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV818-1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Software Verification
% Problem : Hoare logic with procedures 114_1
% Version : Especial.
% English : Completeness is taken relative to completeness of the underlying
% logic. Two versions of completeness proof: nested single recursion
% and simultaneous recursion in call rule.
% Refs : [Nip10] Nipkow (2010), Email to Geoff Sutcliffe
% : [BN10] Boehme & Nipkow (2010), Sledgehammer: Judgement Day
% Source : [Nip10]
% Names : Hoare-114_1 [Nip10]
% Status : Unsatisfiable
% Rating : 0.05 v8.2.0, 0.00 v7.4.0, 0.04 v7.3.0, 0.00 v6.4.0, 0.05 v6.3.0, 0.06 v6.2.0, 0.07 v6.1.0, 0.06 v6.0.0, 0.10 v5.5.0, 0.05 v5.4.0, 0.07 v5.3.0, 0.08 v5.2.0, 0.07 v4.1.0
% Syntax : Number of clauses : 4 ( 4 unt; 0 nHn; 2 RR)
% Number of literals : 4 ( 4 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 5 con; 0-3 aty)
% Number of variables : 4 ( 3 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(cls_tracing__def_0,axiom,
c_Code__Evaluation_Otracing(V_s,V_x,T_a) = V_x ).
cnf(cls_tracing__def__raw_0,axiom,
c_Code__Evaluation_Otracing(v_s,v_x,t_a) = v_x ).
cnf(cls_conjecture_0,negated_conjecture,
v_s != v_t ).
cnf(cls_conjecture_1,negated_conjecture,
V_s = v_ta ).
%------------------------------------------------------------------------------