TPTP Problem File: SWV425^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV425^1 : TPTP v9.0.0. Released v3.6.0.
% Domain : Software Verification (Security)
% Problem : ICL logic mapping to modal logic implies 'unit'
% Version : [Ben08] axioms.
% English :
% Refs : [GA08] Garg & Abadi (2008), A Modal Deconstruction of Access
% : [Ben08] Benzmueller (2008), Automating Access Control Logics i
% : [BP09] Benzmueller & Paulson (2009), Exploring Properties of
% Source : [Ben08]
% Names :
% Status : CounterSatisfiable
% Rating : 0.00 v8.2.0, 0.25 v8.1.0, 0.20 v7.5.0, 0.00 v4.0.0, 1.00 v3.7.0
% Syntax : Number of formulae : 57 ( 24 unt; 32 typ; 24 def)
% Number of atoms : 77 ( 24 equ; 0 cnn)
% Maximal formula atoms : 9 ( 3 avg)
% Number of connectives : 58 ( 3 ~; 1 |; 2 &; 51 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 1 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 124 ( 124 >; 0 *; 0 +; 0 <<)
% Number of symbols : 39 ( 36 usr; 8 con; 0-3 aty)
% Number of variables : 47 ( 39 ^; 4 !; 4 ?; 47 :)
% SPC : TH0_CSA_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms of multi modal logic
include('Axioms/LCL008^0.ax').
%----Include axioms of ICL logic
include('Axioms/SWV008^0.ax').
%------------------------------------------------------------------------------
%----We introduce an arbitrary atom s
thf(s,type,
s: $i > $o ).
%----We introduce an arbitrary principal a
thf(a,type,
a: $i > $o ).
%----Can we prove 'unit'?
thf(unit,conjecture,
iclval @ ( icl_impl @ ( icl_atom @ s ) @ ( icl_says @ ( icl_princ @ a ) @ ( icl_atom @ s ) ) ) ).
%------------------------------------------------------------------------------