TPTP Problem File: SWV415+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV415+2 : TPTP v9.0.0. Released v3.3.0.
% Domain : Software Verification
% Problem : Priority queue checker: Formula (7)
% Version : [dNP05] axioms : Augmented & Reduced > Complete.
% English :
% Refs : [Pis06] Piskac (2006), Email to Geoff Sutcliffe
% : [dNP05] de Nivelle & Piskac (2005), Verification of an Off-Lin
% Source : [Pis06]
% Names :
% Status : Theorem
% Rating : 0.39 v9.0.0, 0.44 v8.1.0, 0.42 v7.5.0, 0.50 v7.4.0, 0.37 v7.3.0, 0.45 v7.1.0, 0.35 v7.0.0, 0.40 v6.4.0, 0.46 v6.3.0, 0.38 v6.2.0, 0.48 v6.1.0, 0.57 v6.0.0, 0.48 v5.5.0, 0.59 v5.4.0, 0.61 v5.3.0, 0.67 v5.2.0, 0.55 v5.1.0, 0.57 v5.0.0, 0.58 v4.1.0, 0.57 v4.0.1, 0.61 v4.0.0, 0.62 v3.7.0, 0.60 v3.5.0, 0.63 v3.3.0
% Syntax : Number of formulae : 64 ( 24 unt; 0 def)
% Number of atoms : 133 ( 45 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 85 ( 16 ~; 4 |; 22 &)
% ( 16 <=>; 27 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 5 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 21 ( 19 usr; 1 prp; 0-3 aty)
% Number of functors : 26 ( 26 usr; 4 con; 0-3 aty)
% Number of variables : 187 ( 184 !; 3 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Version by Geoff Sutcliffe, without lemmas.
%------------------------------------------------------------------------------
%----Include the axioms about priority queues and checked priority queues
include('Axioms/SWV007+0.ax').
include('Axioms/SWV007+1.ax').
include('Axioms/SWV007+2.ax').
include('Axioms/SWV007+3.ax').
include('Axioms/SWV007+4.ax').
%------------------------------------------------------------------------------
fof(big2_induction,axiom,
( ( ! [U,V,W,X] : i(triple(U,create_slb,W)) = i(triple(V,create_slb,X))
& ! [Y] :
( ! [Z,X1,X2,X3] : i(triple(Z,Y,X2)) = i(triple(X1,Y,X3))
=> ! [X4,X5,X6,X7,X8,X9] : i(triple(X4,insert_slb(Y,pair(X8,X9)),X6)) = i(triple(X5,insert_slb(Y,pair(X8,X9)),X7)) ) )
=> ! [X10,X11,X12,X13,X14] : i(triple(X10,X12,X13)) = i(triple(X11,X12,X14)) ) ).
fof(co2,conjecture,
! [U,V,W,X] : i(insert_cpq(triple(U,V,W),X)) = insert_pq(i(triple(U,V,W)),X) ).
%------------------------------------------------------------------------------