TPTP Problem File: SWV381+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV381+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Software Verification
% Problem : Priority queue checker: lemma_min_elem_smallest
% Version : [dNP05] axioms.
% English :
% Refs : [Pis06] Piskac (2006), Email to Geoff Sutcliffe
% : [dNP05] de Nivelle & Piskac (2005), Verification of an Off-Lin
% Source : [Pis06]
% Names : cpq_l017 [Pis06]
% Status : Theorem
% Rating : 0.27 v9.0.0, 0.28 v8.2.0, 0.33 v8.1.0, 0.25 v7.4.0, 0.30 v7.3.0, 0.28 v7.2.0, 0.24 v7.1.0, 0.26 v7.0.0, 0.23 v6.4.0, 0.27 v6.3.0, 0.25 v6.2.0, 0.28 v6.1.0, 0.30 v6.0.0, 0.26 v5.5.0, 0.37 v5.4.0, 0.46 v5.3.0, 0.52 v5.2.0, 0.35 v5.1.0, 0.33 v5.0.0, 0.42 v4.1.0, 0.48 v4.0.0, 0.50 v3.5.0, 0.58 v3.3.0
% Syntax : Number of formulae : 65 ( 23 unt; 0 def)
% Number of atoms : 135 ( 40 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 87 ( 17 ~; 4 |; 22 &)
% ( 17 <=>; 27 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 5 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 21 ( 19 usr; 1 prp; 0-3 aty)
% Number of functors : 26 ( 26 usr; 4 con; 0-3 aty)
% Number of variables : 174 ( 170 !; 4 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Include the axioms about priority queues and checked priority queues
include('Axioms/SWV007+0.ax').
include('Axioms/SWV007+1.ax').
include('Axioms/SWV007+2.ax').
include('Axioms/SWV007+3.ax').
include('Axioms/SWV007+4.ax').
%------------------------------------------------------------------------------
%----lemma_contains_s_I (cpq_l005.p, cpq_l006.p)
fof(l17_li56,lemma,
! [U,V,W,X] :
( contains_cpq(triple(U,V,W),X)
<=> contains_pq(i(triple(U,V,W)),X) ) ).
%----lemma_not_min_elem_not_phi (cpq_l018.p)
fof(l17_l18,lemma,
! [U,V,W] :
( ? [X] :
( contains_cpq(triple(U,V,W),X)
& strictly_less_than(X,findmin_cpq_res(triple(U,V,W))) )
=> ~ phi(findmin_cpq_eff(triple(U,V,W))) ) ).
%----lemma_min_elem_smallest (conjecture)
fof(l17_co,conjecture,
! [U,V,W] :
( phi(findmin_cpq_eff(triple(U,V,W)))
=> issmallestelement_pq(i(triple(U,V,W)),findmin_cpq_res(triple(U,V,W))) ) ).
%------------------------------------------------------------------------------