TPTP Problem File: SWV372+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV372+2 : TPTP v9.0.0. Released v3.3.0.
% Domain : Software Verification
% Problem : Priority queue checker: lemma_contains_cpq_min_elem
% Version : [dNP05] axioms : Augmented & Reduced > Redundant.
% English :
% Refs : [Pis06] Piskac (2006), Email to Geoff Sutcliffe
% : [dNP05] de Nivelle & Piskac (2005), Verification of an Off-Lin
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 1.00 v3.3.0
% Syntax : Number of formulae : 66 ( 23 unt; 0 def)
% Number of atoms : 139 ( 41 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 92 ( 19 ~; 4 |; 23 &)
% ( 17 <=>; 29 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 5 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 21 ( 19 usr; 1 prp; 0-3 aty)
% Number of functors : 26 ( 26 usr; 4 con; 0-3 aty)
% Number of variables : 179 ( 176 !; 3 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Version by Geoff Sutcliffe, with more distant lemmas.
%------------------------------------------------------------------------------
%----Include the axioms about priority queues and checked priority queues
include('Axioms/SWV007+0.ax').
include('Axioms/SWV007+1.ax').
include('Axioms/SWV007+2.ax').
include('Axioms/SWV007+3.ax').
include('Axioms/SWV007+4.ax').
%------------------------------------------------------------------------------
%----lemma_contains_s_I (cpq_l005.p, cpq_l006.p)
fof(l8_li56,lemma,
! [U,V,W,X] :
( contains_cpq(triple(U,V,W),X)
<=> contains_pq(i(triple(U,V,W)),X) ) ).
%----lemma_ok_find_min (cpq_l010.p)
fof(l9_l10,lemma,
! [U,V,W] :
( ok(findmin_cpq_eff(triple(U,V,W)))
=> ( V != create_slb
& contains_slb(V,findmin_pqp_res(U))
& less_than(lookup_slb(V,findmin_pqp_res(U)),findmin_pqp_res(U)) ) ) ).
%----lemma_not_ok_persistence (cpq_l012.p)
fof(l11_l12,lemma,
! [U,V,W] :
( ~ ok(triple(U,V,W))
=> ! [X,Y,Z] :
( succ_cpq(triple(U,V,W),triple(X,Y,Z))
=> ~ ok(triple(X,Y,Z)) ) ) ).
%----lemma_contains_cpq_min_elem (conjecture)
fof(l8_co,conjecture,
! [U,V,W] :
( phi(findmin_cpq_eff(triple(U,V,W)))
=> contains_pq(i(triple(U,V,W)),findmin_cpq_res(triple(U,V,W))) ) ).
%------------------------------------------------------------------------------