TPTP Problem File: SWV340-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV340-1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Software Verification (Security)
% Problem : Cryptographic protocol problem for Yahalom
% Version : [Pau06] axioms : Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names : Yahalom__new_keys_not_used_3 [Pau06]
% Status : Unsatisfiable
% Rating : 0.65 v9.0.0, 0.60 v8.2.0, 0.67 v8.1.0, 0.68 v7.5.0, 0.74 v7.4.0, 0.71 v7.3.0, 0.67 v7.1.0, 0.58 v7.0.0, 0.67 v6.3.0, 0.64 v6.2.0, 0.80 v6.1.0, 0.86 v6.0.0, 0.80 v5.5.0, 0.95 v5.4.0, 0.90 v5.3.0, 0.94 v5.0.0, 0.93 v4.1.0, 0.85 v4.0.1, 0.91 v3.7.0, 0.90 v3.5.0, 0.91 v3.4.0, 0.92 v3.3.0, 1.00 v3.2.0
% Syntax : Number of clauses : 2952 ( 773 unt; 266 nHn;2105 RR)
% Number of literals : 6336 (1441 equ;3219 neg)
% Maximal clause size : 7 ( 2 avg)
% Maximal term depth : 8 ( 1 avg)
% Number of predicates : 87 ( 86 usr; 0 prp; 1-3 aty)
% Number of functors : 276 ( 276 usr; 63 con; 0-18 aty)
% Number of variables : 6189 (1378 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found.
%------------------------------------------------------------------------------
include('Axioms/MSC001-0.ax').
include('Axioms/MSC001-1.ax').
include('Axioms/SWV005-0.ax').
include('Axioms/SWV005-2.ax').
include('Axioms/SWV005-3.ax').
include('Axioms/SWV005-4.ax').
%------------------------------------------------------------------------------
cnf(cls_Event_OkeysFor__parts__insert__dest_0,axiom,
( ~ c_in(V_K,c_Message_OkeysFor(c_Message_Oparts(c_insert(V_X,V_G,tc_Message_Omsg))),tc_nat)
| ~ c_in(V_X,c_Message_Osynth(c_Message_Oanalz(V_H)),tc_Message_Omsg)
| c_in(V_K,c_Message_OkeysFor(c_Message_Oparts(c_union(V_G,V_H,tc_Message_Omsg))),tc_nat)
| c_in(c_Message_Omsg_OKey(c_Message_OinvKey(V_K)),c_Message_Oparts(V_H),tc_Message_Omsg) ) ).
cnf(cls_conjecture_0,negated_conjecture,
c_in(v_K,c_Message_OsymKeys,tc_nat) ).
cnf(cls_conjecture_1,negated_conjecture,
c_in(v_evs4,c_Yahalom_Oyahalom,tc_List_Olist(tc_Event_Oevent)) ).
cnf(cls_conjecture_10,negated_conjecture,
( ~ c_in(v_K,c_Message_OkeysFor(c_Message_Oparts(c_Event_Oknows(c_Message_Oagent_OSpy,v_evs4))),tc_nat)
| c_in(c_Message_Omsg_OKey(v_K),c_Event_Oused(v_evs4),tc_Message_Omsg) ) ).
cnf(cls_conjecture_2,negated_conjecture,
v_A != c_Message_Oagent_OServer ).
cnf(cls_conjecture_3,negated_conjecture,
c_in(v_Ka,c_Message_OsymKeys,tc_nat) ).
cnf(cls_conjecture_4,negated_conjecture,
c_in(c_Event_Oevent_OGets(v_A,c_Message_Omsg_OMPair(c_Message_Omsg_OCrypt(c_Public_OshrK(v_A),c_Message_Omsg_OMPair(c_Message_Omsg_OAgent(v_B),c_Message_Omsg_OMPair(c_Message_Omsg_OKey(v_Ka),c_Message_Omsg_OMPair(c_Message_Omsg_ONonce(v_NA),c_Message_Omsg_ONonce(v_NB))))),v_X)),c_List_Oset(v_evs4,tc_Event_Oevent),tc_Event_Oevent) ).
cnf(cls_conjecture_5,negated_conjecture,
c_in(c_Event_Oevent_OSays(v_A,v_B,c_Message_Omsg_OMPair(c_Message_Omsg_OAgent(v_A),c_Message_Omsg_ONonce(v_NA))),c_List_Oset(v_evs4,tc_Event_Oevent),tc_Event_Oevent) ).
cnf(cls_conjecture_6,negated_conjecture,
c_in(v_X,c_Message_Oparts(c_Event_Oknows(c_Message_Oagent_OSpy,v_evs4)),tc_Message_Omsg) ).
cnf(cls_conjecture_7,negated_conjecture,
~ c_in(c_Message_Omsg_OKey(v_K),c_Message_Oparts(c_insert(v_X,c_insert(c_Message_Omsg_OCrypt(v_Ka,c_Message_Omsg_ONonce(v_NB)),c_emptyset,tc_Message_Omsg),tc_Message_Omsg)),tc_Message_Omsg) ).
cnf(cls_conjecture_8,negated_conjecture,
~ c_in(c_Message_Omsg_OKey(v_K),c_Event_Oused(v_evs4),tc_Message_Omsg) ).
cnf(cls_conjecture_9,negated_conjecture,
v_K = v_Ka ).
%------------------------------------------------------------------------------