TPTP Problem File: SWV282-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV282-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Software Verification (Security)
% Problem : Cryptographic protocol problem for public
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.25 v8.2.0, 0.33 v8.1.0, 0.16 v7.5.0, 0.47 v7.3.0, 0.25 v7.1.0, 0.17 v7.0.0, 0.40 v6.4.0, 0.47 v6.3.0, 0.36 v6.2.0, 0.40 v6.1.0, 0.50 v5.5.0, 0.70 v5.3.0, 0.72 v5.2.0, 0.62 v5.1.0, 0.65 v5.0.0, 0.64 v4.1.0, 0.69 v4.0.1, 0.64 v4.0.0, 0.73 v3.7.0, 0.60 v3.5.0, 0.64 v3.4.0, 0.75 v3.3.0, 0.64 v3.2.0
% Syntax : Number of clauses : 14 ( 9 unt; 1 nHn; 6 RR)
% Number of literals : 23 ( 10 equ; 6 neg)
% Maximal clause size : 6 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 2-3 aty)
% Number of functors : 16 ( 16 usr; 7 con; 0-3 aty)
% Number of variables : 23 ( 3 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_conjecture_0,negated_conjecture,
( V_U = V_W
| V_V = V_W
| V_U = V_V
| c_in(c_Message_Omsg_ONonce(V_W),c_Event_Oused(v_evs_H_H),tc_Message_Omsg)
| c_in(c_Message_Omsg_ONonce(V_V),c_Event_Oused(v_evs_H),tc_Message_Omsg)
| c_in(c_Message_Omsg_ONonce(V_U),c_Event_Oused(v_evs),tc_Message_Omsg) ) ).
cnf(cls_Binomial_Obinomial__1_0,axiom,
c_Binomial_Obinomial(V_y,c_Suc(c_0)) = V_y ).
cnf(cls_Binomial_Obinomial__Suc__Suc_0,axiom,
c_Binomial_Obinomial(c_Suc(V_n),c_Suc(V_k)) = c_plus(c_Binomial_Obinomial(V_n,V_k),c_Binomial_Obinomial(V_n,c_Suc(V_k)),tc_nat) ).
cnf(cls_Binomial_Obinomial__n__0_0,axiom,
c_Binomial_Obinomial(V_n,c_0) = c_1 ).
cnf(cls_Nat_OOne__nat__def_0,axiom,
c_1 = c_Suc(c_0) ).
cnf(cls_Nat_Odiff__is__0__eq_0,axiom,
( c_minus(V_m,V_n,tc_nat) != c_0
| c_lessequals(V_m,V_n,tc_nat) ) ).
cnf(cls_Nat_Odiff__self__eq__0_0,axiom,
c_minus(V_m,V_m,tc_nat) = c_0 ).
cnf(cls_Nat_Ole__add1_0,axiom,
c_lessequals(V_n,c_plus(V_n,V_m,tc_nat),tc_nat) ).
cnf(cls_Nat_OlessI_0,axiom,
c_less(V_n,c_Suc(V_n),tc_nat) ).
cnf(cls_Nat_Oless__Suc__eq__le_1,axiom,
( ~ c_lessequals(V_m,V_n,tc_nat)
| c_less(V_m,c_Suc(V_n),tc_nat) ) ).
cnf(cls_Nat_Onat__add__left__cancel__le_0,axiom,
( ~ c_lessequals(c_plus(V_k,V_m,tc_nat),c_plus(V_k,V_n,tc_nat),tc_nat)
| c_lessequals(V_m,V_n,tc_nat) ) ).
cnf(cls_Nat_Onot__add__less2_0,axiom,
~ c_less(c_plus(V_j,V_i,tc_nat),V_i,tc_nat) ).
cnf(cls_Public_ONonce__supply__lemma_0,axiom,
( ~ c_in(c_Message_Omsg_ONonce(V_U),c_Event_Oused(V_evs),tc_Message_Omsg)
| ~ c_lessequals(v_sko__urX(V_evs),V_U,tc_nat) ) ).
cnf(cls_SetInterval_Ocard__atMost_0,axiom,
c_Finite__Set_Ocard(c_SetInterval_OatMost(V_u,tc_nat),tc_nat) = c_Suc(V_u) ).
%------------------------------------------------------------------------------