TPTP Problem File: SWV268-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV268-1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Software Verification (Security)
% Problem : Cryptographic protocol problem for messages
% Version : [Pau06] axioms : Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names : Message__parts_subset_iff_2 [Pau06]
% Status : Unsatisfiable
% Rating : 0.35 v8.2.0, 0.29 v8.1.0, 0.26 v7.5.0, 0.32 v7.4.0, 0.35 v7.3.0, 0.42 v7.2.0, 0.33 v7.1.0, 0.25 v7.0.0, 0.40 v6.4.0, 0.33 v6.3.0, 0.27 v6.2.0, 0.20 v6.1.0, 0.43 v6.0.0, 0.20 v5.5.0, 0.60 v5.3.0, 0.56 v5.2.0, 0.50 v5.1.0, 0.53 v5.0.0, 0.43 v4.1.0, 0.38 v4.0.1, 0.36 v3.7.0, 0.30 v3.5.0, 0.36 v3.4.0, 0.50 v3.2.0
% Syntax : Number of clauses : 2780 ( 678 unt; 249 nHn;1990 RR)
% Number of literals : 6062 (1329 equ;3099 neg)
% Maximal clause size : 7 ( 2 avg)
% Maximal term depth : 8 ( 1 avg)
% Number of predicates : 87 ( 86 usr; 0 prp; 1-3 aty)
% Number of functors : 249 ( 249 usr; 50 con; 0-18 aty)
% Number of variables : 5764 (1183 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found.
%------------------------------------------------------------------------------
include('Axioms/MSC001-0.ax').
include('Axioms/MSC001-1.ax').
include('Axioms/SWV005-0.ax').
%------------------------------------------------------------------------------
cnf(cls_Message_Oin__parts__UnE_0,axiom,
( ~ c_in(V_c,c_Message_Oparts(c_union(V_G,V_H,tc_Message_Omsg)),tc_Message_Omsg)
| c_in(V_c,c_Message_Oparts(V_H),tc_Message_Omsg)
| c_in(V_c,c_Message_Oparts(V_G),tc_Message_Omsg) ) ).
cnf(cls_Message_Oparts_OBody__dest_0,axiom,
( ~ c_in(c_Message_Omsg_OCrypt(V_K,V_X),c_Message_Oparts(V_H),tc_Message_Omsg)
| c_in(V_X,c_Message_Oparts(V_H),tc_Message_Omsg) ) ).
cnf(cls_Message_Oparts__idem_0,axiom,
c_Message_Oparts(c_Message_Oparts(V_H)) = c_Message_Oparts(V_H) ).
cnf(cls_Message_Oparts__increasing_0,axiom,
c_lessequals(V_H,c_Message_Oparts(V_H),tc_set(tc_Message_Omsg)) ).
cnf(cls_Message_Oparts__mono_0,axiom,
( ~ c_lessequals(V_G,V_H,tc_set(tc_Message_Omsg))
| c_lessequals(c_Message_Oparts(V_G),c_Message_Oparts(V_H),tc_set(tc_Message_Omsg)) ) ).
cnf(cls_Message_Oparts__partsD__dest_0,axiom,
( ~ c_in(V_X,c_Message_Oparts(c_Message_Oparts(V_H)),tc_Message_Omsg)
| c_in(V_X,c_Message_Oparts(V_H),tc_Message_Omsg) ) ).
cnf(cls_Set_Osubset__trans_0,axiom,
( ~ c_lessequals(V_B,V_C,tc_set(T_a))
| ~ c_lessequals(V_A,V_B,tc_set(T_a))
| c_lessequals(V_A,V_C,tc_set(T_a)) ) ).
cnf(cls_conjecture_0,negated_conjecture,
c_lessequals(v_G,c_Message_Oparts(v_H),tc_set(tc_Message_Omsg)) ).
cnf(cls_conjecture_1,negated_conjecture,
~ c_lessequals(c_Message_Oparts(v_G),c_Message_Oparts(v_H),tc_set(tc_Message_Omsg)) ).
%------------------------------------------------------------------------------