TPTP Problem File: SWV261-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV261-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Software Verification (Security)
% Problem : Cryptographic protocol problem for messages
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.20 v8.2.0, 0.24 v8.1.0, 0.16 v7.5.0, 0.21 v7.4.0, 0.18 v7.3.0, 0.25 v7.1.0, 0.17 v7.0.0, 0.20 v6.3.0, 0.18 v6.2.0, 0.10 v6.1.0, 0.21 v6.0.0, 0.20 v5.4.0, 0.25 v5.3.0, 0.28 v5.2.0, 0.19 v5.1.0, 0.18 v5.0.0, 0.14 v4.1.0, 0.23 v4.0.1, 0.36 v4.0.0, 0.18 v3.7.0, 0.20 v3.5.0, 0.18 v3.4.0, 0.25 v3.3.0, 0.36 v3.2.0
% Syntax : Number of clauses : 10 ( 3 unt; 2 nHn; 6 RR)
% Number of literals : 19 ( 1 equ; 8 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 9 ( 9 usr; 4 con; 0-3 aty)
% Number of variables : 26 ( 2 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_conjecture_0,negated_conjecture,
c_in(v_X,v_G,tc_Message_Omsg) ).
cnf(cls_conjecture_1,negated_conjecture,
~ c_lessequals(c_Message_Oparts(c_insert(v_X,v_H,tc_Message_Omsg)),c_union(c_Message_Oparts(v_G),c_Message_Oparts(v_H),tc_Message_Omsg),tc_set(tc_Message_Omsg)) ).
cnf(cls_Message_Oparts__Un__subset2_0,axiom,
c_lessequals(c_Message_Oparts(c_union(V_G,V_H,tc_Message_Omsg)),c_union(c_Message_Oparts(V_G),c_Message_Oparts(V_H),tc_Message_Omsg),tc_set(tc_Message_Omsg)) ).
cnf(cls_Message_Oparts__mono_0,axiom,
( ~ c_lessequals(V_G,V_H,tc_set(tc_Message_Omsg))
| c_lessequals(c_Message_Oparts(V_G),c_Message_Oparts(V_H),tc_set(tc_Message_Omsg)) ) ).
cnf(cls_Set_OUnCI_0,axiom,
( ~ c_in(V_c,V_B,T_a)
| c_in(V_c,c_union(V_A,V_B,T_a),T_a) ) ).
cnf(cls_Set_OUnCI_1,axiom,
( ~ c_in(V_c,V_A,T_a)
| c_in(V_c,c_union(V_A,V_B,T_a),T_a) ) ).
cnf(cls_Set_OinsertE_0,axiom,
( ~ c_in(V_a,c_insert(V_b,V_A,T_a),T_a)
| c_in(V_a,V_A,T_a)
| V_a = V_b ) ).
cnf(cls_Set_OsubsetI_0,axiom,
( c_in(c_Main_OsubsetI__1(V_A,V_B,T_a),V_A,T_a)
| c_lessequals(V_A,V_B,tc_set(T_a)) ) ).
cnf(cls_Set_OsubsetI_1,axiom,
( ~ c_in(c_Main_OsubsetI__1(V_A,V_B,T_a),V_B,T_a)
| c_lessequals(V_A,V_B,tc_set(T_a)) ) ).
cnf(cls_Set_Osubset__trans_0,axiom,
( ~ c_lessequals(V_B,V_C,tc_set(T_a))
| ~ c_lessequals(V_A,V_B,tc_set(T_a))
| c_lessequals(V_A,V_C,tc_set(T_a)) ) ).
%------------------------------------------------------------------------------