TPTP Problem File: SWV128+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV128+1 : TPTP v9.0.0. Bugfixed v3.3.0.
% Domain : Software Verification
% Problem : Unsimplified proof obligation thruster_inuse_0001
% Version : [DFS04] axioms : Especial.
% English : Proof obligation emerging from the inuse-safety verification for
% the thruster program. inuse-safety ensures that each sensor
% reading passed as an input to the Kalman filter algorithm is
% actually used during the computation of the output estimate.
% Refs : [Fis04] Fischer (2004), Email to G. Sutcliffe
% : [DFS04] Denney et al. (2004), Using Automated Theorem Provers
% Source : [Fis04]
% Names : thruster_inuse_0001 [Fis04]
% Status : Theorem
% Rating : 0.03 v7.1.0, 0.04 v7.0.0, 0.03 v6.4.0, 0.04 v6.3.0, 0.08 v6.2.0, 0.12 v6.1.0, 0.13 v5.5.0, 0.11 v5.4.0, 0.07 v5.3.0, 0.15 v5.2.0, 0.10 v5.0.0, 0.04 v4.0.0, 0.08 v3.7.0, 0.10 v3.5.0, 0.16 v3.4.0, 0.26 v3.3.0
% Syntax : Number of formulae : 92 ( 56 unt; 0 def)
% Number of atoms : 280 ( 87 equ)
% Maximal formula atoms : 24 ( 3 avg)
% Number of connectives : 193 ( 5 ~; 17 |; 109 &)
% ( 5 <=>; 57 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 4 avg)
% Maximal term depth : 9 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 1 prp; 0-2 aty)
% Number of functors : 39 ( 39 usr; 21 con; 0-4 aty)
% Number of variables : 176 ( 176 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
% Bugfixes : v3.3.0 - Bugfix in SWV003+0
%------------------------------------------------------------------------------
%----Include NASA software certification axioms
include('Axioms/SWV003+0.ax').
%------------------------------------------------------------------------------
%----Proof obligation generated by the AutoBayes/AutoFilter system
fof(thruster_inuse_0001,conjecture,
( ( t_defuse = use
& tvar_defuse = use
& ! [A,B] :
( ( leq(n0,A)
& leq(n0,B)
& leq(A,minus(m_measvars,n1))
& leq(B,minus(n_steps,n1)) )
=> a_select3(rho_defuse,A,B) = use )
& ! [C,D] :
( ( leq(n0,C)
& leq(n0,D)
& leq(C,n7)
& leq(D,minus(n_steps,n1)) )
=> a_select3(tr_defuse,C,D) = use )
& ! [E] :
( ( leq(n0,E)
& leq(E,minus(n_statevars,n1)) )
=> a_select2(xinit_defuse,E) = use )
& ! [F] :
( ( leq(n0,F)
& leq(F,minus(n_statevars,n1)) )
=> a_select2(xinit_mean_defuse,F) = use )
& ! [G,H] :
( ( leq(n0,G)
& leq(n0,H)
& leq(G,minus(m_measvars,n1))
& leq(H,minus(n_steps,n1)) )
=> a_select3(z_defuse,G,H) = use ) )
=> true ) ).
%----Automatically generated axioms
fof(gt_5_4,axiom,
gt(n5,n4) ).
fof(gt_7_4,axiom,
gt(n7,n4) ).
fof(gt_7_5,axiom,
gt(n7,n5) ).
fof(gt_4_tptp_minus_1,axiom,
gt(n4,tptp_minus_1) ).
fof(gt_5_tptp_minus_1,axiom,
gt(n5,tptp_minus_1) ).
fof(gt_7_tptp_minus_1,axiom,
gt(n7,tptp_minus_1) ).
fof(gt_0_tptp_minus_1,axiom,
gt(n0,tptp_minus_1) ).
fof(gt_1_tptp_minus_1,axiom,
gt(n1,tptp_minus_1) ).
fof(gt_2_tptp_minus_1,axiom,
gt(n2,tptp_minus_1) ).
fof(gt_3_tptp_minus_1,axiom,
gt(n3,tptp_minus_1) ).
fof(gt_4_0,axiom,
gt(n4,n0) ).
fof(gt_5_0,axiom,
gt(n5,n0) ).
fof(gt_7_0,axiom,
gt(n7,n0) ).
fof(gt_1_0,axiom,
gt(n1,n0) ).
fof(gt_2_0,axiom,
gt(n2,n0) ).
fof(gt_3_0,axiom,
gt(n3,n0) ).
fof(gt_4_1,axiom,
gt(n4,n1) ).
fof(gt_5_1,axiom,
gt(n5,n1) ).
fof(gt_7_1,axiom,
gt(n7,n1) ).
fof(gt_2_1,axiom,
gt(n2,n1) ).
fof(gt_3_1,axiom,
gt(n3,n1) ).
fof(gt_4_2,axiom,
gt(n4,n2) ).
fof(gt_5_2,axiom,
gt(n5,n2) ).
fof(gt_7_2,axiom,
gt(n7,n2) ).
fof(gt_3_2,axiom,
gt(n3,n2) ).
fof(gt_4_3,axiom,
gt(n4,n3) ).
fof(gt_5_3,axiom,
gt(n5,n3) ).
fof(gt_7_3,axiom,
gt(n7,n3) ).
fof(finite_domain_4,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n4) )
=> ( X = n0
| X = n1
| X = n2
| X = n3
| X = n4 ) ) ).
fof(finite_domain_5,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n5) )
=> ( X = n0
| X = n1
| X = n2
| X = n3
| X = n4
| X = n5 ) ) ).
fof(finite_domain_0,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n0) )
=> X = n0 ) ).
fof(finite_domain_1,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n1) )
=> ( X = n0
| X = n1 ) ) ).
fof(finite_domain_2,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n2) )
=> ( X = n0
| X = n1
| X = n2 ) ) ).
fof(finite_domain_3,axiom,
! [X] :
( ( leq(n0,X)
& leq(X,n3) )
=> ( X = n0
| X = n1
| X = n2
| X = n3 ) ) ).
fof(successor_4,axiom,
succ(succ(succ(succ(n0)))) = n4 ).
fof(successor_5,axiom,
succ(succ(succ(succ(succ(n0))))) = n5 ).
fof(successor_1,axiom,
succ(n0) = n1 ).
fof(successor_2,axiom,
succ(succ(n0)) = n2 ).
fof(successor_3,axiom,
succ(succ(succ(n0))) = n3 ).
%------------------------------------------------------------------------------