TPTP Problem File: SWV021-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWV021-10 : TPTP v9.0.0. Released v7.5.0.
% Domain : Puzzles
% Problem : Show that the add function is commutative.
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Satisfiable
% Rating : 0.57 v9.0.0, 0.67 v8.2.0, 0.80 v8.1.0, 0.75 v7.5.0
% Syntax : Number of clauses : 6 ( 6 unt; 0 nHn; 1 RR)
% Number of literals : 6 ( 6 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-4 aty)
% Number of variables : 11 ( 2 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : Converted from SWV021-1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(zero_is_not_s,axiom,
n0 != s(X) ).
cnf(successor_is_injective,axiom,
ifeq(s(X),s(Y),X,Y) = Y ).
cnf(definition_add_0,axiom,
add(n0,Y) = Y ).
cnf(definition_add_s,axiom,
add(s(X),Y) = s(add(X,Y)) ).
cnf(consistency_of_add_commutative,negated_conjecture,
add(X,Y) = add(Y,X) ).
%------------------------------------------------------------------------------