TPTP Problem File: SWC485_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWC485_1 : TPTP v9.0.0. Released v9.0.0.
% Domain : Software Creation
% Problem : Prove equivalence of small and fast program for sequence A313730
% Version : Especial.
% English : Terms: 1 5 10 15 20 25 29 34 39 44 49 54 59 64 69 74 79 83 88 93
% Small: loop((((y*y)+x)/((x+y)+y))+y,(x+x)+x,1)+x
% Fast : loop(((((1+(2+2))*(1+x))/(1+(2+(2*(2+2)))))+
% (if x<=0 then 1 else x))+x,1,x+x)
% Refs : [GB+23] Gauthier et al. (2023), A Mathematical Benchmark for I
% : [Git23] https://github.com/ai4reason/oeis-atp-benchmark
% Source : [Git23]
% Names : A313730 [Git23]
% Status : Unknown
% Rating : 1.00 v9.0.0
% Syntax : Number of formulae : 26 ( 9 unt; 13 typ; 0 def)
% Number of atoms : 23 ( 16 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 15 ( 5 ~; 0 |; 4 &)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Maximal term depth : 8 ( 2 avg)
% Number arithmetic : 82 ( 7 atm; 31 fun; 30 num; 14 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 15 ( 11 >; 4 *; 0 +; 0 <<)
% Number of predicates : 3 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 19 ( 13 usr; 5 con; 0-2 aty)
% Number of variables : 14 (; 13 !; 1 ?; 14 :)
% SPC : TF0_UNK_EQU_ARI
% Comments : In the "aind_syn" subset, i.e., likely to require induction.
%------------------------------------------------------------------------------
tff(v0,type,
v0: $int > $int ).
tff(div,type,
'div:(Int*Int)>Int': ( $int * $int ) > $int ).
tff(u1,type,
u1: ( $int * $int ) > $int ).
tff(u0,type,
u0: ( $int * $int ) > $int ).
tff(v1,type,
v1: $int > $int ).
tff(g0,type,
g0: $int > $int ).
tff(h1,type,
h1: $int > $int ).
tff(f0,type,
f0: ( $int * $int ) > $int ).
tff(h0,type,
h0: $int ).
tff(g1,type,
g1: $int ).
tff(fast,type,
fast: $int > $int ).
tff(small,type,
small: $int > $int ).
tff(f1,type,
f1: $int > $int ).
%----∀ x:Int y:Int (f0(x, y) = ((((y * y) + x) div ((x + y) + y)) + y))
tff(formula_1,axiom,
! [X: $int,Y: $int] : ( f0(X,Y) = $sum('div:(Int*Int)>Int'($sum($product(Y,Y),X),$sum($sum(X,Y),Y)),Y) ) ).
%----∀ x:Int (g0(x) = ((x + x) + x))
tff(formula_2,axiom,
! [X: $int] : ( g0(X) = $sum($sum(X,X),X) ) ).
%----(h0 = 1)
tff(formula_3,axiom,
h0 = 1 ).
%----∀ x:Int y:Int (u0(x, y) = (if (x ≤ 0) y else f0(u0((x - 1), y), x)))
tff(formula_4,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(X,0)
=> ( u0(X,Y) = Y ) )
& ( ~ $lesseq(X,0)
=> ( u0(X,Y) = f0(u0($difference(X,1),Y),X) ) ) ) ).
%----∀ x:Int (v0(x) = u0(g0(x), h0))
tff(formula_5,axiom,
! [X: $int] : ( v0(X) = u0(g0(X),h0) ) ).
%----∀ x:Int (small(x) = (v0(x) + x))
tff(formula_6,axiom,
! [X: $int] : ( small(X) = $sum(v0(X),X) ) ).
%----∀ x:Int (f1(x) = (((((1 + (2 + 2)) * (1 + x)) div (1 + (2 + (2 * (2 +
%----2))))) + (if (x ≤ 0) 1 else x)) + x))
tff(formula_7,axiom,
! [X: $int] :
( ( $lesseq(X,0)
=> ( f1(X) = $sum($sum('div:(Int*Int)>Int'($product($sum(1,$sum(2,2)),$sum(1,X)),$sum(1,$sum(2,$product(2,$sum(2,2))))),1),X) ) )
& ( ~ $lesseq(X,0)
=> ( f1(X) = $sum($sum('div:(Int*Int)>Int'($product($sum(1,$sum(2,2)),$sum(1,X)),$sum(1,$sum(2,$product(2,$sum(2,2))))),X),X) ) ) ) ).
%----(g1 = 1)
tff(formula_8,axiom,
g1 = 1 ).
%----∀ x:Int (h1(x) = (x + x))
tff(formula_9,axiom,
! [X: $int] : ( h1(X) = $sum(X,X) ) ).
%----∀ x:Int y:Int (u1(x, y) = (if (x ≤ 0) y else f1(u1((x - 1), y))))
tff(formula_10,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(X,0)
=> ( u1(X,Y) = Y ) )
& ( ~ $lesseq(X,0)
=> ( u1(X,Y) = f1(u1($difference(X,1),Y)) ) ) ) ).
%----∀ x:Int (v1(x) = u1(g1, h1(x)))
tff(formula_11,axiom,
! [X: $int] : ( v1(X) = u1(g1,h1(X)) ) ).
%----∀ x:Int (fast(x) = v1(x))
tff(formula_12,axiom,
! [X: $int] : ( fast(X) = v1(X) ) ).
%----∃ c:Int ((c ≥ 0) ∧ ¬(small(c) = fast(c)))
tff(conjecture_1,conjecture,
~ ? [C: $int] :
( $greatereq(C,0)
& ( small(C) != fast(C) ) ) ).
%------------------------------------------------------------------------------