TPTP Problem File: SWC481_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWC481_1 : TPTP v9.0.0. Released v9.0.0.
% Domain : Software Creation
% Problem : Prove equivalence of small and fast program for sequence A265284
% Version : Especial.
% English : Terms: 1 4 8 14 20 28 36 46 56 68 80 94 108 124 140 158 176 196
% 216 238
% Small: (loop((x/(x/y))+x,x,1)+x)+x
% Fast : ((((1+(x*x))/2)+(if x<=0 then 1 else x))+x)+x
% Refs : [GB+23] Gauthier et al. (2023), A Mathematical Benchmark for I
% : [Git23] https://github.com/ai4reason/oeis-atp-benchmark
% Source : [Git23]
% Names : A265284 [Git23]
% Status : Unknown
% Rating : 1.00 v9.0.0
% Syntax : Number of formulae : 16 ( 5 unt; 8 typ; 0 def)
% Number of atoms : 15 ( 10 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 11 ( 4 ~; 0 |; 3 &)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Maximal term depth : 7 ( 2 avg)
% Number arithmetic : 40 ( 5 atm; 14 fun; 12 num; 9 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 10 ( 7 >; 3 *; 0 +; 0 <<)
% Number of predicates : 3 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 14 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 9 (; 8 !; 1 ?; 9 :)
% SPC : TF0_UNK_EQU_ARI
% Comments : In the "aind_syn" subset, i.e., likely to require induction.
%------------------------------------------------------------------------------
tff(v0,type,
v0: $int > $int ).
tff(div,type,
'div:(Int*Int)>Int': ( $int * $int ) > $int ).
tff(u0,type,
u0: ( $int * $int ) > $int ).
tff(g0,type,
g0: $int > $int ).
tff(f0,type,
f0: ( $int * $int ) > $int ).
tff(h0,type,
h0: $int ).
tff(fast,type,
fast: $int > $int ).
tff(small,type,
small: $int > $int ).
%----∀ x:Int y:Int (f0(x, y) = ((x div (x div y)) + x))
tff(formula_1,axiom,
! [X: $int,Y: $int] : ( f0(X,Y) = $sum('div:(Int*Int)>Int'(X,'div:(Int*Int)>Int'(X,Y)),X) ) ).
%----∀ x:Int (g0(x) = x)
tff(formula_2,axiom,
! [X: $int] : ( g0(X) = X ) ).
%----(h0 = 1)
tff(formula_3,axiom,
h0 = 1 ).
%----∀ x:Int y:Int (u0(x, y) = (if (x ≤ 0) y else f0(u0((x - 1), y), x)))
tff(formula_4,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(X,0)
=> ( u0(X,Y) = Y ) )
& ( ~ $lesseq(X,0)
=> ( u0(X,Y) = f0(u0($difference(X,1),Y),X) ) ) ) ).
%----∀ x:Int (v0(x) = u0(g0(x), h0))
tff(formula_5,axiom,
! [X: $int] : ( v0(X) = u0(g0(X),h0) ) ).
%----∀ x:Int (small(x) = ((v0(x) + x) + x))
tff(formula_6,axiom,
! [X: $int] : ( small(X) = $sum($sum(v0(X),X),X) ) ).
%----∀ x:Int (fast(x) = (((((1 + (x * x)) div 2) + (if (x ≤ 0) 1 else x)) + x)
%----+ x))
tff(formula_7,axiom,
! [X: $int] :
( ( $lesseq(X,0)
=> ( fast(X) = $sum($sum($sum('div:(Int*Int)>Int'($sum(1,$product(X,X)),2),1),X),X) ) )
& ( ~ $lesseq(X,0)
=> ( fast(X) = $sum($sum($sum('div:(Int*Int)>Int'($sum(1,$product(X,X)),2),X),X),X) ) ) ) ).
%----∃ c:Int ((c ≥ 0) ∧ ¬(small(c) = fast(c)))
tff(conjecture_1,conjecture,
~ ? [C: $int] :
( $greatereq(C,0)
& ( small(C) != fast(C) ) ) ).
%------------------------------------------------------------------------------