TPTP Problem File: SWC470_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWC470_1 : TPTP v9.0.0. Released v9.0.0.
% Domain : Software Creation
% Problem : Prove equivalence of small and fast program for sequence A184528
% Version : Especial.
% English : Terms: 1 2 4 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 23 24
% Small: (((((((((((x/(2+2))+x)/(2+2))+2)/2)+1)+x)/2)+1)/
% (1+2))+x)+1
% Fast : ((((((((x/(2+(2*(2+2))))+x)/(1+(2+(2+2))))+x)/2)-1)/
% (1+2))+x)+2
% Refs : [GB+23] Gauthier et al. (2023), A Mathematical Benchmark for I
% : [Git23] https://github.com/ai4reason/oeis-atp-benchmark
% Source : [Git23]
% Names : A184528 [Git23]
% Status : CounterSatisfiable
% Rating : 1.00 v9.0.0
% Syntax : Number of formulae : 5 ( 2 unt; 2 typ; 0 def)
% Number of atoms : 13 ( 3 equ)
% Maximal formula atoms : 2 ( 4 avg)
% Number of connectives : 3 ( 2 ~; 0 |; 1 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 9 ( 2 avg)
% Number of FOOLs : 9 ( 9 fml; 0 var)
% Number arithmetic : 52 ( 1 atm; 22 fun; 26 num; 3 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of predicates : 3 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 2 usr; 3 con; 0-2 aty)
% Number of variables : 3 (; 2 !; 1 ?; 3 :)
% SPC : TX0_CSA_EQU_ARI
% Comments : Not in an "aind_*" subset, i.e., unlikely to require induction.
%------------------------------------------------------------------------------
tff(fast,type,
fast: $int > $int ).
tff(small,type,
small: $int > $int ).
%----∀ x:Int (small(x) = ((((((((((((x div (2 + 2)) + x) div (2 + 2)) + 2) div
%----2) + 1) + x) div 2) + 1) div (1 + 2)) + x) + 1))
tff(formula_1,axiom,
! [X: $int] : ( small(X) = $sum($sum('div:(Int*Int)>Int'($sum('div:(Int*Int)>Int'($sum($sum('div:(Int*Int)>Int'($sum('div:(Int*Int)>Int'($sum('div:(Int*Int)>Int'(X,$sum(2,2)),X),$sum(2,2)),2),2),1),X),2),1),$sum(1,2)),X),1) ) ).
%----∀ x:Int (fast(x) = (((((((((x div (2 + (2 * (2 + 2)))) + x) div (1 + (2 +
%----(2 + 2)))) + x) div 2) - 1) div (1 + 2)) + x) + 2))
tff(formula_2,axiom,
! [X: $int] : ( fast(X) = $sum($sum('div:(Int*Int)>Int'($difference('div:(Int*Int)>Int'($sum('div:(Int*Int)>Int'($sum('div:(Int*Int)>Int'(X,$sum(2,$product(2,$sum(2,2)))),X),$sum(1,$sum(2,$sum(2,2)))),X),2),1),$sum(1,2)),X),2) ) ).
%----∃ c:Int ((c ≥ 0) ∧ ¬(small(c) = fast(c)))
tff(conjecture_1,conjecture,
~ ? [C: $int] :
( $greatereq(C,0)
& ( small(C) != fast(C) ) ) ).
%------------------------------------------------------------------------------