TPTP Problem File: SWC465_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWC465_1 : TPTP v9.0.0. Released v9.0.0.
% Domain : Software Creation
% Problem : Prove equivalence of small and fast program for sequence A167389
% Version : Especial.
% English : Terms: 2 3 5 6 8 9 10 12 13 15 16 18 19 21 22 23 25 26 28 29
% Small: (((((1+(((x/(2+(2*(2+2))))-x)/(2+2)))/2)+x)/2)+2)+x
% Fast : (((((1+2)*(1+(2+x)))+(x/(2+(2*(2+2)))))/
% (1+(2+(2+2))))+1)+x
% Refs : [GB+23] Gauthier et al. (2023), A Mathematical Benchmark for I
% : [Git23] https://github.com/ai4reason/oeis-atp-benchmark
% Source : [Git23]
% Names : A167389 [Git23]
% Status : CounterSatisfiable
% Rating : 1.00 v9.0.0
% Syntax : Number of formulae : 5 ( 2 unt; 2 typ; 0 def)
% Number of atoms : 10 ( 3 equ)
% Maximal formula atoms : 2 ( 3 avg)
% Number of connectives : 3 ( 2 ~; 0 |; 1 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 9 ( 2 avg)
% Number of FOOLs : 6 ( 6 fml; 0 var)
% Number arithmetic : 50 ( 1 atm; 22 fun; 24 num; 3 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of predicates : 3 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 2 usr; 3 con; 0-2 aty)
% Number of variables : 3 (; 2 !; 1 ?; 3 :)
% SPC : TX0_CSA_EQU_ARI
% Comments : Not in an "aind_*" subset, i.e., unlikely to require induction.
%------------------------------------------------------------------------------
tff(fast,type,
fast: $int > $int ).
tff(small,type,
small: $int > $int ).
%----∀ x:Int (small(x) = ((((((1 + (((x div (2 + (2 * (2 + 2)))) - x) div (2 +
%----2))) div 2) + x) div 2) + 2) + x))
tff(formula_1,axiom,
! [X: $int] : ( small(X) = $sum($sum('div:(Int*Int)>Int'($sum('div:(Int*Int)>Int'($sum(1,'div:(Int*Int)>Int'($difference('div:(Int*Int)>Int'(X,$sum(2,$product(2,$sum(2,2)))),X),$sum(2,2))),2),X),2),2),X) ) ).
%----∀ x:Int (fast(x) = ((((((1 + 2) * (1 + (2 + x))) + (x div (2 + (2 * (2 +
%----2))))) div (1 + (2 + (2 + 2)))) + 1) + x))
tff(formula_2,axiom,
! [X: $int] : ( fast(X) = $sum($sum('div:(Int*Int)>Int'($sum($product($sum(1,2),$sum(1,$sum(2,X))),'div:(Int*Int)>Int'(X,$sum(2,$product(2,$sum(2,2))))),$sum(1,$sum(2,$sum(2,2)))),1),X) ) ).
%----∃ c:Int ((c ≥ 0) ∧ ¬(small(c) = fast(c)))
tff(conjecture_1,conjecture,
~ ? [C: $int] :
( $greatereq(C,0)
& ( small(C) != fast(C) ) ) ).
%------------------------------------------------------------------------------