TPTP Problem File: SWC464_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWC464_1 : TPTP v9.0.0. Released v9.0.0.
% Domain : Software Creation
% Problem : Prove equivalence of small and fast program for sequence A163584
% Version : Especial.
% English : Terms: 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0
% Small: (((((1+(x/(1-(2*(2+(2+2))))))/2)+1)+x)%(1+2))/2
% Fast : (((1+((2*(2+2))+x))%(2+(2*(2+(2*(2+2))))))%(1+2))%2
% Refs : [GB+23] Gauthier et al. (2023), A Mathematical Benchmark for I
% : [Git23] https://github.com/ai4reason/oeis-atp-benchmark
% Source : [Git23]
% Names : A163584 [Git23]
% Status : CounterSatisfiable
% Rating : 1.00 v9.0.0
% Syntax : Number of formulae : 6 ( 2 unt; 3 typ; 0 def)
% Number of atoms : 7 ( 3 equ)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 3 ( 2 ~; 0 |; 1 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 9 ( 2 avg)
% Number of FOOLs : 3 ( 3 fml; 0 var)
% Number arithmetic : 47 ( 1 atm; 18 fun; 25 num; 3 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 4 ( 3 >; 1 *; 0 +; 0 <<)
% Number of predicates : 3 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 3 usr; 3 con; 0-2 aty)
% Number of variables : 3 (; 2 !; 1 ?; 3 :)
% SPC : TX0_CSA_EQU_ARI
% Comments : Not in an "aind_*" subset, i.e., unlikely to require induction.
%------------------------------------------------------------------------------
tff(fast,type,
fast: $int > $int ).
tff(mod,type,
'mod:(Int*Int)>Int': ( $int * $int ) > $int ).
tff(small,type,
small: $int > $int ).
%----∀ x:Int (small(x) = (mod(((((1 + (x div (1 - (2 * (2 + (2 + 2)))))) div 2)
%----+ 1) + x), (1 + 2)) div 2))
tff(formula_1,axiom,
! [X: $int] : ( small(X) = 'div:(Int*Int)>Int'('mod:(Int*Int)>Int'($sum($sum('div:(Int*Int)>Int'($sum(1,'div:(Int*Int)>Int'(X,$difference(1,$product(2,$sum(2,$sum(2,2)))))),2),1),X),$sum(1,2)),2) ) ).
%----∀ x:Int (fast(x) = mod(mod(mod((1 + ((2 * (2 + 2)) + x)), (2 + (2 * (2 +
%----(2 * (2 + 2)))))), (1 + 2)), 2))
tff(formula_2,axiom,
! [X: $int] : ( fast(X) = 'mod:(Int*Int)>Int'('mod:(Int*Int)>Int'('mod:(Int*Int)>Int'($sum(1,$sum($product(2,$sum(2,2)),X)),$sum(2,$product(2,$sum(2,$product(2,$sum(2,2)))))),$sum(1,2)),2) ) ).
%----∃ c:Int ((c ≥ 0) ∧ ¬(small(c) = fast(c)))
tff(conjecture_1,conjecture,
~ ? [C: $int] :
( $greatereq(C,0)
& ( small(C) != fast(C) ) ) ).
%------------------------------------------------------------------------------