TPTP Problem File: SWC445_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWC445_1 : TPTP v9.0.0. Released v9.0.0.
% Domain : Software Creation
% Problem : Prove equivalence of small and fast program for sequence A54331
% Version : Especial.
% English : Terms: 1 60 1584 27456 366080 4073472 39690240 349274112
% 2835283968 21554790400 155194490880 1067345510400 7058711642112
% 45127489814528 280101660917760 1693862087098368 10009185060126720
% 57935518230380544
% Small: loop((2*(((2*(2+2))+y)*x))/(1+y),x+x,1)
% Fast : loop(loop(2*((2*(2*(2*(x/y))))+x),x,1)/(1+x),1,x+x)
% Refs : [GB+23] Gauthier et al. (2023), A Mathematical Benchmark for I
% : [Git23] https://github.com/ai4reason/oeis-atp-benchmark
% Source : [Git23]
% Names : A54331 [Git23]
% Status : Unknown
% Rating : 1.00 v9.0.0
% Syntax : Number of formulae : 36 ( 14 unt; 18 typ; 0 def)
% Number of atoms : 28 ( 21 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 15 ( 5 ~; 0 |; 4 &)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Maximal term depth : 7 ( 2 avg)
% Number arithmetic : 67 ( 7 atm; 17 fun; 23 num; 20 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 21 ( 15 >; 6 *; 0 +; 0 <<)
% Number of predicates : 3 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 24 ( 18 usr; 6 con; 0-2 aty)
% Number of variables : 20 (; 19 !; 1 ?; 20 :)
% SPC : TF0_UNK_EQU_ARI
% Comments : In the "aind_sem" subset, i.e., very likely to require induction.
%------------------------------------------------------------------------------
tff(v0,type,
v0: $int > $int ).
tff(u2,type,
u2: ( $int * $int ) > $int ).
tff(div,type,
'div:(Int*Int)>Int': ( $int * $int ) > $int ).
tff(h2,type,
h2: $int ).
tff(g2,type,
g2: $int > $int ).
tff(u1,type,
u1: ( $int * $int ) > $int ).
tff(u0,type,
u0: ( $int * $int ) > $int ).
tff(v1,type,
v1: $int > $int ).
tff(v2,type,
v2: $int > $int ).
tff(g0,type,
g0: $int > $int ).
tff(h1,type,
h1: $int > $int ).
tff(f0,type,
f0: ( $int * $int ) > $int ).
tff(h0,type,
h0: $int ).
tff(g1,type,
g1: $int ).
tff(f2,type,
f2: ( $int * $int ) > $int ).
tff(fast,type,
fast: $int > $int ).
tff(small,type,
small: $int > $int ).
tff(f1,type,
f1: $int > $int ).
%----∀ x:Int y:Int (f0(x, y) = ((2 * (((2 * (2 + 2)) + y) * x)) div (1 + y)))
tff(formula_1,axiom,
! [X: $int,Y: $int] : ( f0(X,Y) = 'div:(Int*Int)>Int'($product(2,$product($sum($product(2,$sum(2,2)),Y),X)),$sum(1,Y)) ) ).
%----∀ x:Int (g0(x) = (x + x))
tff(formula_2,axiom,
! [X: $int] : ( g0(X) = $sum(X,X) ) ).
%----(h0 = 1)
tff(formula_3,axiom,
h0 = 1 ).
%----∀ x:Int y:Int (u0(x, y) = (if (x ≤ 0) y else f0(u0((x - 1), y), x)))
tff(formula_4,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(X,0)
=> ( u0(X,Y) = Y ) )
& ( ~ $lesseq(X,0)
=> ( u0(X,Y) = f0(u0($difference(X,1),Y),X) ) ) ) ).
%----∀ x:Int (v0(x) = u0(g0(x), h0))
tff(formula_5,axiom,
! [X: $int] : ( v0(X) = u0(g0(X),h0) ) ).
%----∀ x:Int (small(x) = v0(x))
tff(formula_6,axiom,
! [X: $int] : ( small(X) = v0(X) ) ).
%----∀ x:Int y:Int (f2(x, y) = (2 * ((2 * (2 * (2 * (x div y)))) + x)))
tff(formula_7,axiom,
! [X: $int,Y: $int] : ( f2(X,Y) = $product(2,$sum($product(2,$product(2,$product(2,'div:(Int*Int)>Int'(X,Y)))),X)) ) ).
%----∀ x:Int (g2(x) = x)
tff(formula_8,axiom,
! [X: $int] : ( g2(X) = X ) ).
%----(h2 = 1)
tff(formula_9,axiom,
h2 = 1 ).
%----∀ x:Int y:Int (u2(x, y) = (if (x ≤ 0) y else f2(u2((x - 1), y), x)))
tff(formula_10,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(X,0)
=> ( u2(X,Y) = Y ) )
& ( ~ $lesseq(X,0)
=> ( u2(X,Y) = f2(u2($difference(X,1),Y),X) ) ) ) ).
%----∀ x:Int (v2(x) = u2(g2(x), h2))
tff(formula_11,axiom,
! [X: $int] : ( v2(X) = u2(g2(X),h2) ) ).
%----∀ x:Int (f1(x) = (v2(x) div (1 + x)))
tff(formula_12,axiom,
! [X: $int] : ( f1(X) = 'div:(Int*Int)>Int'(v2(X),$sum(1,X)) ) ).
%----(g1 = 1)
tff(formula_13,axiom,
g1 = 1 ).
%----∀ x:Int (h1(x) = (x + x))
tff(formula_14,axiom,
! [X: $int] : ( h1(X) = $sum(X,X) ) ).
%----∀ x:Int y:Int (u1(x, y) = (if (x ≤ 0) y else f1(u1((x - 1), y))))
tff(formula_15,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(X,0)
=> ( u1(X,Y) = Y ) )
& ( ~ $lesseq(X,0)
=> ( u1(X,Y) = f1(u1($difference(X,1),Y)) ) ) ) ).
%----∀ x:Int (v1(x) = u1(g1, h1(x)))
tff(formula_16,axiom,
! [X: $int] : ( v1(X) = u1(g1,h1(X)) ) ).
%----∀ x:Int (fast(x) = v1(x))
tff(formula_17,axiom,
! [X: $int] : ( fast(X) = v1(X) ) ).
%----∃ c:Int ((c ≥ 0) ∧ ¬(small(c) = fast(c)))
tff(conjecture_1,conjecture,
~ ? [C: $int] :
( $greatereq(C,0)
& ( small(C) != fast(C) ) ) ).
%------------------------------------------------------------------------------