TPTP Problem File: SWC431_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWC431_1 : TPTP v9.0.0. Released v9.0.0.
% Domain : Software Creation
% Problem : Prove equivalence of small and fast program for sequence A914
% Version : Especial.
% English : Terms: 0 2 11 35 85 175 322 546 870 1320 1925 2717 3731 5005 6580
% 8500 10812 13566 16815 20615
% Small: loop(((1+y)*loop(x+y,y,0))+x,x,0)
% Fast : ((1+((2+((x+x)+x))*(2+x)))*((2+x)*x))/(2*(2*(2+(2+2))))
% Refs : [GB+23] Gauthier et al. (2023), A Mathematical Benchmark for I
% : [Git23] https://github.com/ai4reason/oeis-atp-benchmark
% Source : [Git23]
% Names : A914 [Git23]
% Status : Unknown
% Rating : 1.00 v9.0.0
% Syntax : Number of formulae : 26 ( 10 unt; 13 typ; 0 def)
% Number of atoms : 20 ( 15 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 11 ( 4 ~; 0 |; 3 &)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Maximal term depth : 8 ( 2 avg)
% Number arithmetic : 60 ( 5 atm; 19 fun; 19 num; 17 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 18 ( 11 >; 7 *; 0 +; 0 <<)
% Number of predicates : 3 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 19 ( 13 usr; 5 con; 0-2 aty)
% Number of variables : 17 (; 16 !; 1 ?; 17 :)
% SPC : TF0_UNK_EQU_ARI
% Comments : In the "aind_sem" subset, i.e., very likely to require induction.
%------------------------------------------------------------------------------
tff(v0,type,
v0: $int > $int ).
tff(div,type,
'div:(Int*Int)>Int': ( $int * $int ) > $int ).
tff(u1,type,
u1: ( $int * $int ) > $int ).
tff(u0,type,
u0: ( $int * $int ) > $int ).
tff(v1,type,
v1: ( $int * $int ) > $int ).
tff(g0,type,
g0: $int > $int ).
tff(g1,type,
g1: ( $int * $int ) > $int ).
tff(h1,type,
h1: $int ).
tff(f0,type,
f0: ( $int * $int ) > $int ).
tff(h0,type,
h0: $int ).
tff(fast,type,
fast: $int > $int ).
tff(f1,type,
f1: ( $int * $int ) > $int ).
tff(small,type,
small: $int > $int ).
%----∀ x:Int y:Int (f1(x, y) = (x + y))
tff(formula_1,axiom,
! [X: $int,Y: $int] : ( f1(X,Y) = $sum(X,Y) ) ).
%----∀ x:Int y:Int (g1(x, y) = y)
tff(formula_2,axiom,
! [X: $int,Y: $int] : ( g1(X,Y) = Y ) ).
%----(h1 = 0)
tff(formula_3,axiom,
h1 = 0 ).
%----∀ x:Int y:Int (u1(x, y) = (if (x ≤ 0) y else f1(u1((x - 1), y), x)))
tff(formula_4,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(X,0)
=> ( u1(X,Y) = Y ) )
& ( ~ $lesseq(X,0)
=> ( u1(X,Y) = f1(u1($difference(X,1),Y),X) ) ) ) ).
%----∀ x:Int y:Int (v1(x, y) = u1(g1(x, y), h1))
tff(formula_5,axiom,
! [X: $int,Y: $int] : ( v1(X,Y) = u1(g1(X,Y),h1) ) ).
%----∀ x:Int y:Int (f0(x, y) = (((1 + y) * v1(x, y)) + x))
tff(formula_6,axiom,
! [X: $int,Y: $int] : ( f0(X,Y) = $sum($product($sum(1,Y),v1(X,Y)),X) ) ).
%----∀ x:Int (g0(x) = x)
tff(formula_7,axiom,
! [X: $int] : ( g0(X) = X ) ).
%----(h0 = 0)
tff(formula_8,axiom,
h0 = 0 ).
%----∀ x:Int y:Int (u0(x, y) = (if (x ≤ 0) y else f0(u0((x - 1), y), x)))
tff(formula_9,axiom,
! [X: $int,Y: $int] :
( ( $lesseq(X,0)
=> ( u0(X,Y) = Y ) )
& ( ~ $lesseq(X,0)
=> ( u0(X,Y) = f0(u0($difference(X,1),Y),X) ) ) ) ).
%----∀ x:Int (v0(x) = u0(g0(x), h0))
tff(formula_10,axiom,
! [X: $int] : ( v0(X) = u0(g0(X),h0) ) ).
%----∀ x:Int (small(x) = v0(x))
tff(formula_11,axiom,
! [X: $int] : ( small(X) = v0(X) ) ).
%----∀ x:Int (fast(x) = (((1 + ((2 + ((x + x) + x)) * (2 + x))) * ((2 + x) *
%----x)) div (2 * (2 * (2 + (2 + 2))))))
tff(formula_12,axiom,
! [X: $int] : ( fast(X) = 'div:(Int*Int)>Int'($product($sum(1,$product($sum(2,$sum($sum(X,X),X)),$sum(2,X))),$product($sum(2,X),X)),$product(2,$product(2,$sum(2,$sum(2,2))))) ) ).
%----∃ c:Int ((c ≥ 0) ∧ ¬(small(c) = fast(c)))
tff(conjecture_1,conjecture,
~ ? [C: $int] :
( $greatereq(C,0)
& ( small(C) != fast(C) ) ) ).
%------------------------------------------------------------------------------