TPTP Problem File: SWC425^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SWC425^7 : TPTP v9.0.0. Released v5.5.0.
% Domain : Software Creation
% Problem : Conflict detection of 2 conceptual schemata (e.g. UML-schemata)
% Version : [Ben12] axioms.
% English :
% Refs : [BE04] Boeva & Ekenberg (2004), A Transition Logic for Schema
% : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source : [Ben12]
% Names : s4-cumul-APM002+1 [Ben12]
% Status : CounterSatisfiable
% Rating : 0.67 v9.0.0, 0.75 v8.2.0, 1.00 v8.1.0, 0.60 v7.5.0, 0.40 v7.4.0, 0.50 v7.2.0, 0.33 v6.4.0, 0.67 v6.3.0, 0.33 v6.0.0, 0.67 v5.5.0
% Syntax : Number of formulae : 84 ( 36 unt; 41 typ; 32 def)
% Number of atoms : 157 ( 36 equ; 0 cnn)
% Maximal formula atoms : 24 ( 3 avg)
% Number of connectives : 214 ( 5 ~; 5 |; 9 &; 185 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 2 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 184 ( 184 >; 0 *; 0 +; 0 <<)
% Number of symbols : 52 ( 50 usr; 14 con; 0-3 aty)
% Number of variables : 94 ( 50 ^; 37 !; 7 ?; 94 :)
% SPC : TH0_CSA_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(r_type,type,
r: mu > $i > $o ).
thf(p_type,type,
p: mu > $i > $o ).
thf(c_type,type,
c: mu ).
thf(existence_of_c_ax,axiom,
! [V: $i] : ( exists_in_world @ c @ V ) ).
thf(b_type,type,
b: mu ).
thf(existence_of_b_ax,axiom,
! [V: $i] : ( exists_in_world @ b @ V ) ).
thf(a_type,type,
a: mu ).
thf(existence_of_a_ax,axiom,
! [V: $i] : ( exists_in_world @ a @ V ) ).
thf(schema1,axiom,
mvalid @ ( mand @ ( mor @ ( mnot @ ( r @ a ) ) @ ( r @ b ) ) @ ( mand @ ( mequiv @ ( r @ c ) @ ( r @ a ) ) @ ( mand @ ( mimplies @ ( r @ a ) @ ( mdia_s4 @ ( r @ b ) ) ) @ ( mimplies @ ( mnot @ ( r @ a ) ) @ ( mdia_s4 @ ( mand @ ( mnot @ ( r @ b ) ) @ ( mnot @ ( r @ c ) ) ) ) ) ) ) ) ).
thf(schema2,axiom,
mvalid @ ( mand @ ( mimplies @ ( p @ a ) @ ( p @ b ) ) @ ( mand @ ( mor @ ( p @ c ) @ ( mnot @ ( p @ b ) ) ) @ ( mimplies @ ( mand @ ( p @ a ) @ ( p @ b ) ) @ ( mdia_s4 @ ( mnot @ ( p @ b ) ) ) ) ) ) ).
thf(integration_assertion,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] : ( mequiv @ ( p @ X ) @ ( r @ X ) ) ) ) ).
thf(con,conjecture,
mvalid @ mfalse ).
%------------------------------------------------------------------------------