TPTP Problem File: SWC416+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC416+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_tail2_x_tail3
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_tail2_x_tail3 [Wei00]
% Status : Theorem
% Rating : 0.42 v9.0.0, 0.47 v8.1.0, 0.44 v7.5.0, 0.53 v7.4.0, 0.37 v7.3.0, 0.45 v7.1.0, 0.48 v7.0.0, 0.37 v6.4.0, 0.46 v6.3.0, 0.54 v6.2.0, 0.68 v6.1.0, 0.70 v6.0.0, 0.65 v5.5.0, 0.85 v5.4.0, 0.86 v5.3.0, 0.89 v5.2.0, 0.80 v5.1.0, 0.76 v5.0.0, 0.79 v4.1.0, 0.78 v4.0.1, 0.83 v4.0.0, 0.79 v3.7.0, 0.85 v3.5.0, 0.84 v3.4.0, 0.74 v3.3.0, 0.64 v3.2.0, 0.73 v3.1.0, 0.78 v2.7.0, 0.67 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 413 ( 78 equ)
% Maximal formula atoms : 19 ( 4 avg)
% Number of connectives : 346 ( 29 ~; 13 |; 46 &)
% ( 26 <=>; 232 =>; 0 <=; 0 <~>)
% Maximal formula depth : 24 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 211 ( 195 !; 16 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ( ( ~ neq(V,nil)
| ? [Y] :
( ssList(Y)
& V = Y
& ? [Z] :
( ssList(Z)
& app(Z,U) = Y
& ? [X1] :
( ssItem(X1)
& cons(X1,nil) = Z
& hd(V) = X1
& neq(nil,V) ) ) )
| ! [X2] :
( ssItem(X2)
=> app(cons(X2,nil),W) != X ) )
& ( ~ neq(V,nil)
| neq(X,nil) ) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------