TPTP Problem File: SWC414-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC414-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_swap_x_swap_tos
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.70 v9.0.0, 0.75 v8.2.0, 0.76 v8.1.0, 0.68 v7.5.0, 0.74 v7.4.0, 0.65 v7.3.0, 0.75 v7.1.0, 0.67 v7.0.0, 0.73 v6.2.0, 0.80 v6.1.0, 0.86 v6.0.0, 0.90 v5.5.0, 0.95 v5.3.0, 1.00 v5.2.0, 0.94 v5.0.0, 0.93 v4.1.0, 0.92 v4.0.1, 1.00 v2.4.0
% Syntax : Number of clauses : 241 ( 60 unt; 69 nHn; 198 RR)
% Number of literals : 770 ( 145 equ; 473 neg)
% Maximal clause size : 11 ( 3 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 62 ( 62 usr; 16 con; 0-2 aty)
% Number of variables : 381 ( 49 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created by CNF conversion from SWC414+1
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001-0.ax').
%--------------------------------------------------------------------------
cnf(co1_1,negated_conjecture,
ssList(sk1) ).
cnf(co1_2,negated_conjecture,
ssList(sk2) ).
cnf(co1_3,negated_conjecture,
ssList(sk3) ).
cnf(co1_4,negated_conjecture,
ssList(sk4) ).
cnf(co1_5,negated_conjecture,
sk2 = sk4 ).
cnf(co1_6,negated_conjecture,
sk1 = sk3 ).
cnf(co1_7,negated_conjecture,
( ~ ssItem(A)
| ~ ssItem(B)
| ~ ssList(C)
| ~ ssList(D)
| ~ ssList(E)
| app(app(app(app(C,cons(A,nil)),D),cons(B,nil)),E) != sk2
| app(app(app(app(C,cons(B,nil)),D),cons(A,nil)),E) != sk1
| ~ ssItem(F)
| ~ ssItem(G)
| ~ ssList(H)
| app(app(cons(F,nil),cons(G,nil)),H) != sk4 ) ).
cnf(co1_8,negated_conjecture,
( ~ ssItem(A)
| ~ ssItem(B)
| ~ ssList(C)
| ~ ssList(D)
| ~ ssList(E)
| app(app(app(app(C,cons(A,nil)),D),cons(B,nil)),E) != sk2
| app(app(app(app(C,cons(B,nil)),D),cons(A,nil)),E) != sk1
| ssItem(sk11) ) ).
cnf(co1_9,negated_conjecture,
( ~ ssItem(A)
| ~ ssItem(B)
| ~ ssList(C)
| ~ ssList(D)
| ~ ssList(E)
| app(app(app(app(C,cons(A,nil)),D),cons(B,nil)),E) != sk2
| app(app(app(app(C,cons(B,nil)),D),cons(A,nil)),E) != sk1
| ssItem(sk12) ) ).
cnf(co1_10,negated_conjecture,
( ~ ssItem(A)
| ~ ssItem(B)
| ~ ssList(C)
| ~ ssList(D)
| ~ ssList(E)
| app(app(app(app(C,cons(A,nil)),D),cons(B,nil)),E) != sk2
| app(app(app(app(C,cons(B,nil)),D),cons(A,nil)),E) != sk1
| ssList(sk13) ) ).
cnf(co1_11,negated_conjecture,
( ~ ssItem(A)
| ~ ssItem(B)
| ~ ssList(C)
| ~ ssList(D)
| ~ ssList(E)
| app(app(app(app(C,cons(A,nil)),D),cons(B,nil)),E) != sk2
| app(app(app(app(C,cons(B,nil)),D),cons(A,nil)),E) != sk1
| app(app(cons(sk11,nil),cons(sk12,nil)),sk13) = sk2 ) ).
cnf(co1_12,negated_conjecture,
( ssItem(sk5)
| ~ ssItem(A)
| ~ ssItem(B)
| ~ ssList(C)
| app(app(cons(A,nil),cons(B,nil)),C) != sk4 ) ).
cnf(co1_13,negated_conjecture,
( ssItem(sk6)
| ~ ssItem(A)
| ~ ssItem(B)
| ~ ssList(C)
| app(app(cons(A,nil),cons(B,nil)),C) != sk4 ) ).
cnf(co1_14,negated_conjecture,
( ssList(sk7)
| ~ ssItem(A)
| ~ ssItem(B)
| ~ ssList(C)
| app(app(cons(A,nil),cons(B,nil)),C) != sk4 ) ).
cnf(co1_15,negated_conjecture,
( app(app(cons(sk5,nil),cons(sk6,nil)),sk7) = sk2
| ~ ssItem(A)
| ~ ssItem(B)
| ~ ssList(C)
| app(app(cons(A,nil),cons(B,nil)),C) != sk4 ) ).
cnf(co1_16,negated_conjecture,
( ssItem(sk8)
| ~ ssItem(A)
| ~ ssItem(B)
| ~ ssList(C)
| app(app(cons(A,nil),cons(B,nil)),C) != sk4 ) ).
cnf(co1_17,negated_conjecture,
( ssItem(sk9)
| ~ ssItem(A)
| ~ ssItem(B)
| ~ ssList(C)
| app(app(cons(A,nil),cons(B,nil)),C) != sk4 ) ).
cnf(co1_18,negated_conjecture,
( ssList(sk10)
| ~ ssItem(A)
| ~ ssItem(B)
| ~ ssList(C)
| app(app(cons(A,nil),cons(B,nil)),C) != sk4 ) ).
cnf(co1_19,negated_conjecture,
( app(app(cons(sk8,nil),cons(sk9,nil)),sk10) = sk4
| ~ ssItem(A)
| ~ ssItem(B)
| ~ ssList(C)
| app(app(cons(A,nil),cons(B,nil)),C) != sk4 ) ).
cnf(co1_20,negated_conjecture,
( app(app(cons(sk9,nil),cons(sk8,nil)),sk10) = sk3
| ~ ssItem(A)
| ~ ssItem(B)
| ~ ssList(C)
| app(app(cons(A,nil),cons(B,nil)),C) != sk4 ) ).
cnf(co1_21,negated_conjecture,
( ssItem(sk5)
| ssItem(sk11) ) ).
cnf(co1_22,negated_conjecture,
( ssItem(sk6)
| ssItem(sk11) ) ).
cnf(co1_23,negated_conjecture,
( ssList(sk7)
| ssItem(sk11) ) ).
cnf(co1_24,negated_conjecture,
( app(app(cons(sk5,nil),cons(sk6,nil)),sk7) = sk2
| ssItem(sk11) ) ).
cnf(co1_25,negated_conjecture,
( ssItem(sk5)
| ssItem(sk12) ) ).
cnf(co1_26,negated_conjecture,
( ssItem(sk5)
| ssList(sk13) ) ).
cnf(co1_27,negated_conjecture,
( ssItem(sk5)
| app(app(cons(sk11,nil),cons(sk12,nil)),sk13) = sk2 ) ).
cnf(co1_28,negated_conjecture,
( ssItem(sk6)
| ssItem(sk12) ) ).
cnf(co1_29,negated_conjecture,
( ssList(sk7)
| ssItem(sk12) ) ).
cnf(co1_30,negated_conjecture,
( app(app(cons(sk5,nil),cons(sk6,nil)),sk7) = sk2
| ssItem(sk12) ) ).
cnf(co1_31,negated_conjecture,
( ssItem(sk6)
| ssList(sk13) ) ).
cnf(co1_32,negated_conjecture,
( ssItem(sk6)
| app(app(cons(sk11,nil),cons(sk12,nil)),sk13) = sk2 ) ).
cnf(co1_33,negated_conjecture,
( ssList(sk7)
| ssList(sk13) ) ).
cnf(co1_34,negated_conjecture,
( app(app(cons(sk5,nil),cons(sk6,nil)),sk7) = sk2
| ssList(sk13) ) ).
cnf(co1_35,negated_conjecture,
( ssList(sk7)
| app(app(cons(sk11,nil),cons(sk12,nil)),sk13) = sk2 ) ).
cnf(co1_36,negated_conjecture,
( app(app(cons(sk5,nil),cons(sk6,nil)),sk7) = sk2
| app(app(cons(sk11,nil),cons(sk12,nil)),sk13) = sk2 ) ).
cnf(co1_37,negated_conjecture,
( ssItem(sk8)
| ssItem(sk11) ) ).
cnf(co1_38,negated_conjecture,
( ssItem(sk9)
| ssItem(sk11) ) ).
cnf(co1_39,negated_conjecture,
( ssList(sk10)
| ssItem(sk11) ) ).
cnf(co1_40,negated_conjecture,
( app(app(cons(sk8,nil),cons(sk9,nil)),sk10) = sk4
| ssItem(sk11) ) ).
cnf(co1_41,negated_conjecture,
( app(app(cons(sk9,nil),cons(sk8,nil)),sk10) = sk3
| ssItem(sk11) ) ).
cnf(co1_42,negated_conjecture,
( ssItem(sk8)
| ssItem(sk12) ) ).
cnf(co1_43,negated_conjecture,
( ssItem(sk8)
| ssList(sk13) ) ).
cnf(co1_44,negated_conjecture,
( ssItem(sk8)
| app(app(cons(sk11,nil),cons(sk12,nil)),sk13) = sk2 ) ).
cnf(co1_45,negated_conjecture,
( ssItem(sk9)
| ssItem(sk12) ) ).
cnf(co1_46,negated_conjecture,
( ssList(sk10)
| ssItem(sk12) ) ).
cnf(co1_47,negated_conjecture,
( app(app(cons(sk8,nil),cons(sk9,nil)),sk10) = sk4
| ssItem(sk12) ) ).
cnf(co1_48,negated_conjecture,
( app(app(cons(sk9,nil),cons(sk8,nil)),sk10) = sk3
| ssItem(sk12) ) ).
cnf(co1_49,negated_conjecture,
( ssItem(sk9)
| ssList(sk13) ) ).
cnf(co1_50,negated_conjecture,
( ssItem(sk9)
| app(app(cons(sk11,nil),cons(sk12,nil)),sk13) = sk2 ) ).
cnf(co1_51,negated_conjecture,
( ssList(sk10)
| ssList(sk13) ) ).
cnf(co1_52,negated_conjecture,
( app(app(cons(sk8,nil),cons(sk9,nil)),sk10) = sk4
| ssList(sk13) ) ).
cnf(co1_53,negated_conjecture,
( app(app(cons(sk9,nil),cons(sk8,nil)),sk10) = sk3
| ssList(sk13) ) ).
cnf(co1_54,negated_conjecture,
( ssList(sk10)
| app(app(cons(sk11,nil),cons(sk12,nil)),sk13) = sk2 ) ).
cnf(co1_55,negated_conjecture,
( app(app(cons(sk8,nil),cons(sk9,nil)),sk10) = sk4
| app(app(cons(sk11,nil),cons(sk12,nil)),sk13) = sk2 ) ).
cnf(co1_56,negated_conjecture,
( app(app(cons(sk9,nil),cons(sk8,nil)),sk10) = sk3
| app(app(cons(sk11,nil),cons(sk12,nil)),sk13) = sk2 ) ).
%--------------------------------------------------------------------------