TPTP Problem File: SWC414+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC414+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_swap_x_swap_tos
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_swap_x_swap_tos [Wei00]
% Status : Theorem
% Rating : 0.88 v9.0.0, 0.86 v8.1.0, 0.89 v7.5.0, 0.88 v7.4.0, 0.90 v7.3.0, 0.83 v7.1.0, 0.78 v7.0.0, 0.77 v6.4.0, 0.73 v6.3.0, 0.75 v6.2.0, 0.92 v6.1.0, 0.97 v6.0.0, 0.96 v5.2.0, 0.95 v5.0.0, 0.96 v4.0.1, 1.00 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 424 ( 80 equ)
% Maximal formula atoms : 30 ( 4 avg)
% Number of connectives : 360 ( 32 ~; 16 |; 48 &)
% ( 26 <=>; 238 =>; 0 <=; 0 <~>)
% Maximal formula depth : 24 ( 7 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 224 ( 203 !; 21 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ~ ssList(X)
| V != X
| U != W
| ( ( ? [Y] :
( ssItem(Y)
& ? [Z] :
( ssItem(Z)
& ? [X1] :
( ssList(X1)
& ? [X2] :
( ssList(X2)
& ? [X3] :
( ssList(X3)
& app(app(app(app(X1,cons(Y,nil)),X2),cons(Z,nil)),X3) = V
& app(app(app(app(X1,cons(Z,nil)),X2),cons(Y,nil)),X3) = U ) ) ) ) )
| ! [X4] :
( ssItem(X4)
=> ! [X5] :
( ssItem(X5)
=> ! [X6] :
( ssList(X6)
=> app(app(cons(X4,nil),cons(X5,nil)),X6) != V ) ) )
| ! [X7] :
( ssItem(X7)
=> ! [X8] :
( ssItem(X8)
=> ! [X9] :
( ~ ssList(X9)
| app(app(cons(X7,nil),cons(X8,nil)),X9) != X
| app(app(cons(X8,nil),cons(X7,nil)),X9) != W ) ) ) )
& ( ? [X10] :
( ssItem(X10)
& ? [X11] :
( ssItem(X11)
& ? [X12] :
( ssList(X12)
& app(app(cons(X10,nil),cons(X11,nil)),X12) = X ) ) )
| ! [X13] :
( ssItem(X13)
=> ! [X14] :
( ssItem(X14)
=> ! [X15] :
( ssList(X15)
=> app(app(cons(X13,nil),cons(X14,nil)),X15) != V ) ) ) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------