TPTP Problem File: SWC413+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC413+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_swap_tos_x_swap_tos
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_swap_tos_x_swap_tos [Wei00]
% Status : Theorem
% Rating : 0.52 v9.0.0, 0.56 v8.2.0, 0.61 v8.1.0, 0.53 v7.5.0, 0.59 v7.4.0, 0.40 v7.3.0, 0.48 v7.2.0, 0.45 v7.1.0, 0.48 v7.0.0, 0.40 v6.4.0, 0.46 v6.3.0, 0.54 v6.2.0, 0.56 v6.1.0, 0.67 v6.0.0, 0.70 v5.5.0, 0.74 v5.4.0, 0.71 v5.3.0, 0.74 v5.2.0, 0.65 v5.1.0, 0.67 v4.1.0, 0.61 v4.0.0, 0.62 v3.7.0, 0.60 v3.5.0, 0.68 v3.3.0, 0.64 v3.2.0, 0.73 v3.1.0, 0.67 v2.7.0, 0.50 v2.6.0, 0.83 v2.5.0, 1.00 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 422 ( 80 equ)
% Maximal formula atoms : 28 ( 4 avg)
% Number of connectives : 356 ( 30 ~; 14 |; 46 &)
% ( 26 <=>; 240 =>; 0 <=; 0 <~>)
% Maximal formula depth : 22 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 222 ( 203 !; 19 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ( ( ? [Y] :
( ssItem(Y)
& ? [Z] :
( ssItem(Z)
& ? [X1] :
( ssList(X1)
& app(app(cons(Y,nil),cons(Z,nil)),X1) = V
& app(app(cons(Z,nil),cons(Y,nil)),X1) = U ) ) )
| ! [X2] :
( ssItem(X2)
=> ! [X3] :
( ssItem(X3)
=> ! [X4] :
( ssList(X4)
=> app(app(cons(X2,nil),cons(X3,nil)),X4) != V ) ) )
| ! [X5] :
( ssItem(X5)
=> ! [X6] :
( ssItem(X6)
=> ! [X7] :
( ssList(X7)
=> ( app(app(cons(X5,nil),cons(X6,nil)),X7) != X
| app(app(cons(X6,nil),cons(X5,nil)),X7) != W ) ) ) ) )
& ( ? [X8] :
( ssItem(X8)
& ? [X9] :
( ssItem(X9)
& ? [X10] :
( ssList(X10)
& app(app(cons(X8,nil),cons(X9,nil)),X10) = X ) ) )
| ! [X2] :
( ssItem(X2)
=> ! [X3] :
( ssItem(X3)
=> ! [X4] :
( ssList(X4)
=> app(app(cons(X2,nil),cons(X3,nil)),X4) != V ) ) ) ) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------