TPTP Problem File: SWC412+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC412+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_swap_ends_x_swap_ends
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_swap_ends_x_swap_ends [Wei00]
% Status : Theorem
% Rating : 0.48 v9.0.0, 0.47 v8.2.0, 0.50 v8.1.0, 0.47 v7.5.0, 0.50 v7.4.0, 0.37 v7.3.0, 0.34 v7.1.0, 0.43 v7.0.0, 0.37 v6.4.0, 0.42 v6.3.0, 0.50 v6.2.0, 0.52 v6.1.0, 0.63 v6.0.0, 0.61 v5.5.0, 0.67 v5.4.0, 0.68 v5.3.0, 0.70 v5.2.0, 0.60 v5.1.0, 0.62 v4.1.0, 0.61 v4.0.1, 0.70 v4.0.0, 0.71 v3.7.0, 0.70 v3.5.0, 0.79 v3.3.0, 0.71 v3.2.0, 0.64 v3.1.0, 0.67 v2.7.0, 0.50 v2.6.0, 0.83 v2.5.0, 1.00 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 422 ( 80 equ)
% Maximal formula atoms : 28 ( 4 avg)
% Number of connectives : 358 ( 32 ~; 16 |; 46 &)
% ( 26 <=>; 238 =>; 0 <=; 0 <~>)
% Maximal formula depth : 22 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 222 ( 203 !; 19 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ~ ssList(X)
| V != X
| U != W
| ( ( ? [Y] :
( ssItem(Y)
& ? [Z] :
( ssItem(Z)
& ? [X1] :
( ssList(X1)
& app(app(cons(Y,nil),cons(Z,nil)),X1) = X ) ) )
| ! [X2] :
( ssItem(X2)
=> ! [X3] :
( ssItem(X3)
=> ! [X4] :
( ssList(X4)
=> app(app(cons(X2,nil),cons(X3,nil)),X4) != V ) ) ) )
& ( ? [X5] :
( ssItem(X5)
& ? [X6] :
( ssItem(X6)
& ? [X7] :
( ssList(X7)
& app(app(cons(X6,nil),X7),cons(X5,nil)) != W
& app(app(cons(X5,nil),X7),cons(X6,nil)) = X ) ) )
| ! [X8] :
( ssItem(X8)
=> ! [X9] :
( ssItem(X9)
=> ! [X10] :
( ssList(X10)
=> app(app(cons(X8,nil),cons(X9,nil)),X10) != V ) ) )
| ! [X11] :
( ssItem(X11)
=> ! [X12] :
( ssItem(X12)
=> ! [X13] :
( ~ ssList(X13)
| app(app(cons(X11,nil),X13),cons(X12,nil)) != V
| app(app(cons(X12,nil),X13),cons(X11,nil)) = U ) ) ) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------