TPTP Problem File: SWC404+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC404+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_subst_x_run_strict_ord_max2
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_subst_x_run_strict_ord_max2 [Wei00]
% Status : Theorem
% Rating : 0.39 v9.0.0, 0.42 v8.2.0, 0.50 v8.1.0, 0.42 v7.5.0, 0.53 v7.4.0, 0.43 v7.3.0, 0.45 v7.2.0, 0.48 v7.0.0, 0.50 v6.3.0, 0.46 v6.2.0, 0.52 v6.1.0, 0.60 v6.0.0, 0.57 v5.5.0, 0.67 v5.4.0, 0.71 v5.3.0, 0.78 v5.2.0, 0.65 v5.1.0, 0.67 v4.1.0, 0.65 v4.0.0, 0.62 v3.7.0, 0.65 v3.5.0, 0.63 v3.4.0, 0.68 v3.3.0, 0.57 v3.2.0, 0.55 v3.1.0, 0.67 v2.7.0, 0.50 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 423 ( 80 equ)
% Maximal formula atoms : 29 ( 4 avg)
% Number of connectives : 357 ( 30 ~; 16 |; 51 &)
% ( 26 <=>; 234 =>; 0 <=; 0 <~>)
% Maximal formula depth : 29 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 218 ( 197 !; 21 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ! [Y] :
( ssList(Y)
=> ! [Z] :
( ssList(Z)
=> ( app(app(Y,W),Z) != X
| ~ strictorderedP(W)
| ? [X1] :
( ssItem(X1)
& ? [X2] :
( ssList(X2)
& app(X2,cons(X1,nil)) = Y
& ? [X3] :
( ssItem(X3)
& ? [X4] :
( ssList(X4)
& app(cons(X3,nil),X4) = W
& lt(X1,X3) ) ) ) )
| ? [X5] :
( ssItem(X5)
& ? [X6] :
( ssList(X6)
& app(cons(X5,nil),X6) = Z
& ? [X7] :
( ssItem(X7)
& ? [X8] :
( ssList(X8)
& app(X8,cons(X7,nil)) = W
& lt(X7,X5) ) ) ) ) ) ) )
| ! [X9] :
( ssItem(X9)
=> ( ~ memberP(U,X9)
| memberP(V,X9) ) )
| ( nil != X
& nil = W ) ) ) ) ) ) ).
%--------------------------------------------------------------------------