TPTP Problem File: SWC381+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC381+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_some1_x_some1
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_some1_x_some1 [Wei00]
% Status : Theorem
% Rating : 0.15 v9.0.0, 0.19 v8.1.0, 0.14 v7.5.0, 0.12 v7.4.0, 0.13 v7.3.0, 0.14 v7.1.0, 0.22 v7.0.0, 0.13 v6.4.0, 0.19 v6.3.0, 0.25 v6.2.0, 0.28 v6.1.0, 0.27 v6.0.0, 0.30 v5.4.0, 0.36 v5.3.0, 0.30 v5.2.0, 0.15 v5.1.0, 0.14 v5.0.0, 0.17 v4.1.0, 0.22 v4.0.1, 0.26 v4.0.0, 0.25 v3.5.0, 0.21 v3.4.0, 0.32 v3.3.0, 0.21 v3.2.0, 0.36 v3.1.0, 0.56 v2.7.0, 0.50 v2.5.0, 0.33 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 409 ( 75 equ)
% Maximal formula atoms : 15 ( 4 avg)
% Number of connectives : 343 ( 30 ~; 14 |; 41 &)
% ( 26 <=>; 232 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 209 ( 195 !; 14 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ( ( ~ neq(V,nil)
| ? [Y] :
( ssItem(Y)
& cons(Y,nil) = U
& memberP(V,Y) )
| ! [Z] :
( ssItem(Z)
=> ( cons(Z,nil) != W
| ~ memberP(X,Z) ) ) )
& ( ~ neq(V,nil)
| neq(X,nil) ) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------