TPTP Problem File: SWC379+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC379+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_set_min_elems_x_set_min_elems
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_set_min_elems_x_set_min_elems [Wei00]
% Status : Theorem
% Rating : 0.42 v9.0.0, 0.47 v8.2.0, 0.44 v7.5.0, 0.50 v7.4.0, 0.33 v7.3.0, 0.45 v7.2.0, 0.41 v7.1.0, 0.43 v7.0.0, 0.37 v6.4.0, 0.42 v6.3.0, 0.50 v6.2.0, 0.56 v6.1.0, 0.60 v6.0.0, 0.52 v5.5.0, 0.67 v5.4.0, 0.68 v5.3.0, 0.67 v5.2.0, 0.55 v5.1.0, 0.57 v5.0.0, 0.67 v4.1.0, 0.65 v4.0.1, 0.70 v4.0.0, 0.71 v3.7.0, 0.70 v3.5.0, 0.74 v3.3.0, 0.64 v3.2.0, 0.73 v3.1.0, 0.67 v2.7.0, 0.50 v2.6.0, 0.67 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 426 ( 77 equ)
% Maximal formula atoms : 32 ( 4 avg)
% Number of connectives : 366 ( 36 ~; 19 |; 51 &)
% ( 26 <=>; 234 =>; 0 <=; 0 <~>)
% Maximal formula depth : 22 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 213 ( 197 !; 16 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ? [Y] :
( ssItem(Y)
& ( ( ~ memberP(W,Y)
& ! [Z] :
( ssItem(Z)
=> ( ~ memberP(X,Z)
| ~ leq(Z,Y)
| Y = Z ) )
& memberP(X,Y) )
| ( memberP(W,Y)
& ( ~ memberP(X,Y)
| ? [Z] :
( ssItem(Z)
& Y != Z
& memberP(X,Z)
& leq(Z,Y) ) ) ) ) )
| ! [X1] :
( ssItem(X1)
=> ( ( ~ memberP(U,X1)
& ( ~ memberP(V,X1)
| ? [X2] :
( ssItem(X2)
& X1 != X2
& memberP(V,X2)
& leq(X2,X1) ) ) )
| ( ! [X2] :
( ssItem(X2)
=> ( ~ memberP(V,X2)
| ~ leq(X2,X1)
| X1 = X2 ) )
& memberP(V,X1)
& memberP(U,X1) ) ) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------