TPTP Problem File: SWC327-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC327-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_run_eq_front2_x_run_eq_front2
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.40 v8.2.0, 0.43 v8.1.0, 0.37 v7.5.0, 0.42 v7.4.0, 0.47 v7.3.0, 0.42 v7.1.0, 0.33 v7.0.0, 0.53 v6.4.0, 0.40 v6.3.0, 0.45 v6.2.0, 0.80 v6.1.0, 0.79 v6.0.0, 0.80 v5.5.0, 0.85 v5.4.0, 0.90 v5.3.0, 0.94 v5.2.0, 0.81 v5.1.0, 0.82 v5.0.0, 0.79 v4.1.0, 0.77 v4.0.1, 0.64 v3.7.0, 0.70 v3.5.0, 0.73 v3.4.0, 0.75 v3.3.0, 0.71 v3.2.0, 0.77 v3.1.0, 0.82 v2.7.0, 0.92 v2.6.0, 0.89 v2.4.0
% Syntax : Number of clauses : 206 ( 63 unt; 38 nHn; 163 RR)
% Number of literals : 670 ( 129 equ; 439 neg)
% Maximal clause size : 10 ( 3 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 57 ( 57 usr; 8 con; 0-2 aty)
% Number of variables : 339 ( 49 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created by CNF conversion from SWC327+1
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001-0.ax').
%--------------------------------------------------------------------------
cnf(co1_1,negated_conjecture,
ssList(sk1) ).
cnf(co1_2,negated_conjecture,
ssList(sk2) ).
cnf(co1_3,negated_conjecture,
ssList(sk3) ).
cnf(co1_4,negated_conjecture,
ssList(sk4) ).
cnf(co1_5,negated_conjecture,
sk2 = sk4 ).
cnf(co1_6,negated_conjecture,
sk1 = sk3 ).
cnf(co1_7,negated_conjecture,
ssList(sk5) ).
cnf(co1_8,negated_conjecture,
app(sk3,sk5) = sk4 ).
cnf(co1_9,negated_conjecture,
equalelemsP(sk3) ).
cnf(co1_10,negated_conjecture,
( ~ ssItem(A)
| ~ ssList(B)
| app(cons(A,nil),B) != sk5
| ~ ssList(C)
| app(C,cons(A,nil)) != sk3 ) ).
cnf(co1_11,negated_conjecture,
( nil = sk4
| nil != sk3 ) ).
cnf(co1_12,negated_conjecture,
( ~ ssList(A)
| app(sk1,A) != sk2
| ssItem(sk6(A))
| ~ equalelemsP(sk1)
| nil = sk1 ) ).
cnf(co1_13,negated_conjecture,
( ~ ssList(A)
| app(sk1,A) != sk2
| ssItem(sk6(A))
| ~ equalelemsP(sk1)
| nil != sk2 ) ).
cnf(co1_14,negated_conjecture,
( ~ ssList(A)
| app(sk1,A) != sk2
| ssList(sk7(A))
| ~ equalelemsP(sk1)
| nil = sk1 ) ).
cnf(co1_15,negated_conjecture,
( ~ ssList(A)
| app(sk1,A) != sk2
| app(cons(sk6(A),nil),sk7(A)) = A
| ~ equalelemsP(sk1)
| nil = sk1 ) ).
cnf(co1_16,negated_conjecture,
( ~ ssList(A)
| app(sk1,A) != sk2
| ssList(sk8(A))
| ~ equalelemsP(sk1)
| nil = sk1 ) ).
cnf(co1_17,negated_conjecture,
( ~ ssList(A)
| app(sk1,A) != sk2
| app(sk8(A),cons(sk6(A),nil)) = sk1
| ~ equalelemsP(sk1)
| nil = sk1 ) ).
cnf(co1_18,negated_conjecture,
( ~ ssList(A)
| app(sk1,A) != sk2
| ssList(sk7(A))
| ~ equalelemsP(sk1)
| nil != sk2 ) ).
cnf(co1_19,negated_conjecture,
( ~ ssList(A)
| app(sk1,A) != sk2
| app(cons(sk6(A),nil),sk7(A)) = A
| ~ equalelemsP(sk1)
| nil != sk2 ) ).
cnf(co1_20,negated_conjecture,
( ~ ssList(A)
| app(sk1,A) != sk2
| ssList(sk8(A))
| ~ equalelemsP(sk1)
| nil != sk2 ) ).
cnf(co1_21,negated_conjecture,
( ~ ssList(A)
| app(sk1,A) != sk2
| app(sk8(A),cons(sk6(A),nil)) = sk1
| ~ equalelemsP(sk1)
| nil != sk2 ) ).
%--------------------------------------------------------------------------