TPTP Problem File: SWC316-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC316-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_rot_r1_x_rot_r2
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.35 v9.0.0, 0.40 v8.2.0, 0.33 v8.1.0, 0.37 v7.4.0, 0.47 v7.3.0, 0.50 v7.1.0, 0.42 v7.0.0, 0.47 v6.3.0, 0.36 v6.2.0, 0.70 v6.1.0, 0.79 v6.0.0, 0.80 v5.5.0, 0.90 v5.3.0, 0.94 v5.2.0, 0.88 v5.0.0, 0.93 v4.1.0, 0.92 v4.0.1, 0.82 v3.7.0, 0.80 v3.5.0, 0.82 v3.4.0, 0.75 v3.3.0, 0.71 v3.2.0, 0.85 v3.1.0, 0.73 v2.7.0, 0.75 v2.6.0, 0.78 v2.5.0, 0.89 v2.4.0
% Syntax : Number of clauses : 203 ( 60 unt; 38 nHn; 160 RR)
% Number of literals : 656 ( 114 equ; 428 neg)
% Maximal clause size : 13 ( 3 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 55 ( 55 usr; 9 con; 0-2 aty)
% Number of variables : 334 ( 49 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created by CNF conversion from SWC316+1
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001-0.ax').
%--------------------------------------------------------------------------
cnf(co1_1,negated_conjecture,
ssList(sk1) ).
cnf(co1_2,negated_conjecture,
ssList(sk2) ).
cnf(co1_3,negated_conjecture,
ssList(sk3) ).
cnf(co1_4,negated_conjecture,
ssList(sk4) ).
cnf(co1_5,negated_conjecture,
sk2 = sk4 ).
cnf(co1_6,negated_conjecture,
sk1 = sk3 ).
cnf(co1_7,negated_conjecture,
( neq(sk2,nil)
| neq(sk2,nil) ) ).
cnf(co1_8,negated_conjecture,
( neq(sk2,nil)
| ~ neq(sk4,nil) ) ).
cnf(co1_9,negated_conjecture,
( ssItem(sk5)
| neq(sk2,nil) ) ).
cnf(co1_10,negated_conjecture,
( ssList(sk6)
| neq(sk2,nil) ) ).
cnf(co1_11,negated_conjecture,
( app(cons(sk5,nil),sk6) = sk3
| neq(sk2,nil) ) ).
cnf(co1_12,negated_conjecture,
( app(sk6,cons(sk5,nil)) = sk4
| neq(sk2,nil) ) ).
cnf(co1_13,negated_conjecture,
( ~ ssList(A)
| sk2 != A
| ~ ssList(B)
| ~ ssList(C)
| tl(sk1) != B
| app(B,C) != A
| ~ ssItem(D)
| cons(D,nil) != C
| hd(sk1) != D
| ~ neq(nil,sk1)
| ~ neq(nil,sk1)
| ~ neq(sk1,nil)
| neq(sk2,nil) ) ).
cnf(co1_14,negated_conjecture,
( ssItem(sk5)
| ~ neq(sk4,nil) ) ).
cnf(co1_15,negated_conjecture,
( ssList(sk6)
| ~ neq(sk4,nil) ) ).
cnf(co1_16,negated_conjecture,
( app(cons(sk5,nil),sk6) = sk3
| ~ neq(sk4,nil) ) ).
cnf(co1_17,negated_conjecture,
( app(sk6,cons(sk5,nil)) = sk4
| ~ neq(sk4,nil) ) ).
cnf(co1_18,negated_conjecture,
( ~ ssList(A)
| sk2 != A
| ~ ssList(B)
| ~ ssList(C)
| tl(sk1) != B
| app(B,C) != A
| ~ ssItem(D)
| cons(D,nil) != C
| hd(sk1) != D
| ~ neq(nil,sk1)
| ~ neq(nil,sk1)
| ~ neq(sk1,nil)
| ~ neq(sk4,nil) ) ).
%--------------------------------------------------------------------------