TPTP Problem File: SWC311+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC311+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_rot_l_total2_x_rot_l_total1
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_rot_l_total2_x_rot_l_total1 [Wei00]
% Status : Theorem
% Rating : 0.70 v9.0.0, 0.69 v8.2.0, 0.72 v8.1.0, 0.67 v7.5.0, 0.75 v7.4.0, 0.63 v7.3.0, 0.76 v7.1.0, 0.70 v7.0.0, 0.60 v6.4.0, 0.69 v6.3.0, 0.75 v6.2.0, 0.92 v6.1.0, 0.90 v6.0.0, 0.96 v5.3.0, 1.00 v5.2.0, 0.95 v5.0.0, 0.96 v4.1.0, 1.00 v3.1.0, 0.89 v2.7.0, 1.00 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 421 ( 84 equ)
% Maximal formula atoms : 27 ( 4 avg)
% Number of connectives : 355 ( 30 ~; 14 |; 54 &)
% ( 26 <=>; 231 =>; 0 <=; 0 <~>)
% Maximal formula depth : 28 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 213 ( 194 !; 19 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ( nil != W
& nil = X )
| ( ? [Y] :
( ssList(Y)
& W != Y
& ? [Z] :
( ssList(Z)
& ? [X1] :
( ssList(X1)
& tl(X) = Z
& app(Z,X1) = Y
& ? [X2] :
( ssItem(X2)
& cons(X2,nil) = X1
& hd(X) = X2
& neq(nil,X) )
& neq(nil,X) ) ) )
& neq(X,nil) )
| ( ( nil != V
| nil = U )
& ( ~ neq(V,nil)
| ? [X3] :
( ssItem(X3)
& ? [X4] :
( ssList(X4)
& app(cons(X3,nil),X4) = V
& app(X4,cons(X3,nil)) = U ) ) ) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------