TPTP Problem File: SWC310-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC310-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_rot_l_total1_x_rot_l_total2
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.40 v8.2.0, 0.38 v8.1.0, 0.32 v7.5.0, 0.37 v7.4.0, 0.47 v7.3.0, 0.50 v7.1.0, 0.42 v7.0.0, 0.53 v6.3.0, 0.45 v6.2.0, 0.60 v6.1.0, 0.71 v6.0.0, 0.90 v5.5.0, 0.95 v5.3.0, 1.00 v5.2.0, 0.94 v5.0.0, 0.86 v4.1.0, 0.85 v4.0.1, 0.82 v3.7.0, 0.80 v3.5.0, 0.82 v3.4.0, 0.92 v3.3.0, 0.79 v3.2.0, 0.92 v3.1.0, 1.00 v2.7.0, 0.83 v2.6.0, 0.89 v2.5.0, 1.00 v2.4.0
% Syntax : Number of clauses : 200 ( 60 unt; 34 nHn; 157 RR)
% Number of literals : 648 ( 118 equ; 427 neg)
% Maximal clause size : 12 ( 3 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 55 ( 55 usr; 9 con; 0-2 aty)
% Number of variables : 334 ( 49 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created by CNF conversion from SWC310+1
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001-0.ax').
%--------------------------------------------------------------------------
cnf(co1_1,negated_conjecture,
ssList(sk1) ).
cnf(co1_2,negated_conjecture,
ssList(sk2) ).
cnf(co1_3,negated_conjecture,
ssList(sk3) ).
cnf(co1_4,negated_conjecture,
ssList(sk4) ).
cnf(co1_5,negated_conjecture,
sk2 = sk4 ).
cnf(co1_6,negated_conjecture,
sk1 = sk3 ).
cnf(co1_7,negated_conjecture,
( nil = sk3
| nil != sk4 ) ).
cnf(co1_8,negated_conjecture,
( ssItem(sk5)
| ~ neq(sk4,nil) ) ).
cnf(co1_9,negated_conjecture,
( ssList(sk6)
| ~ neq(sk4,nil) ) ).
cnf(co1_10,negated_conjecture,
( app(cons(sk5,nil),sk6) = sk4
| ~ neq(sk4,nil) ) ).
cnf(co1_11,negated_conjecture,
( app(sk6,cons(sk5,nil)) = sk3
| ~ neq(sk4,nil) ) ).
cnf(co1_12,negated_conjecture,
( nil = sk2
| neq(sk2,nil) ) ).
cnf(co1_13,negated_conjecture,
( nil = sk2
| ~ ssList(A)
| sk1 != A
| ~ ssList(B)
| ~ ssList(C)
| tl(sk2) != B
| app(B,C) != A
| ~ ssItem(D)
| cons(D,nil) != C
| hd(sk2) != D
| ~ neq(nil,sk2)
| ~ neq(nil,sk2) ) ).
cnf(co1_14,negated_conjecture,
( nil != sk1
| neq(sk2,nil) ) ).
cnf(co1_15,negated_conjecture,
( nil != sk1
| ~ ssList(A)
| sk1 != A
| ~ ssList(B)
| ~ ssList(C)
| tl(sk2) != B
| app(B,C) != A
| ~ ssItem(D)
| cons(D,nil) != C
| hd(sk2) != D
| ~ neq(nil,sk2)
| ~ neq(nil,sk2) ) ).
%--------------------------------------------------------------------------