TPTP Problem File: SWC308+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC308+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_rot_l1_x_rot_l_total3
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_rot_l1_x_rot_l_total3 [Wei00]
% Status : Theorem
% Rating : 0.58 v8.2.0, 0.61 v8.1.0, 0.56 v7.5.0, 0.66 v7.4.0, 0.60 v7.3.0, 0.66 v7.1.0, 0.70 v7.0.0, 0.63 v6.4.0, 0.69 v6.3.0, 0.75 v6.2.0, 0.84 v6.1.0, 0.90 v6.0.0, 0.91 v5.5.0, 0.96 v5.3.0, 1.00 v5.2.0, 0.95 v5.1.0, 0.90 v5.0.0, 0.92 v4.1.0, 0.96 v3.7.0, 0.95 v3.3.0, 1.00 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 418 ( 82 equ)
% Maximal formula atoms : 24 ( 4 avg)
% Number of connectives : 351 ( 29 ~; 13 |; 52 &)
% ( 26 <=>; 231 =>; 0 <=; 0 <~>)
% Maximal formula depth : 27 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 213 ( 194 !; 19 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ~ neq(V,nil)
| ? [Y] :
( ssList(Y)
& U = Y
& ? [Z] :
( ssList(Z)
& ? [X1] :
( ssList(X1)
& tl(V) = Z
& app(Z,X1) = Y
& ? [X2] :
( ssItem(X2)
& cons(X2,nil) = X1
& hd(V) = X2
& neq(nil,V) )
& neq(nil,V) ) ) )
| ? [X3] :
( ssItem(X3)
& ? [X4] :
( ssList(X4)
& app(X4,cons(X3,nil)) != W
& app(cons(X3,nil),X4) = X ) )
| ( nil != W
& nil = X ) ) ) ) ) ) ).
%--------------------------------------------------------------------------