TPTP Problem File: SWC254+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC254+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_pst_singleton_ne_x_last
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_pst_singleton_ne_x_last [Wei00]
% Status : Theorem
% Rating : 0.21 v9.0.0, 0.19 v8.2.0, 0.17 v8.1.0, 0.25 v7.5.0, 0.22 v7.4.0, 0.17 v7.1.0, 0.22 v7.0.0, 0.17 v6.4.0, 0.19 v6.3.0, 0.25 v6.2.0, 0.32 v6.1.0, 0.37 v6.0.0, 0.26 v5.4.0, 0.32 v5.3.0, 0.30 v5.2.0, 0.20 v5.1.0, 0.19 v5.0.0, 0.17 v4.1.0, 0.22 v4.0.1, 0.26 v4.0.0, 0.29 v3.7.0, 0.25 v3.5.0, 0.21 v3.4.0, 0.26 v3.3.0, 0.14 v3.2.0, 0.27 v3.1.0, 0.33 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 408 ( 75 equ)
% Maximal formula atoms : 14 ( 4 avg)
% Number of connectives : 342 ( 30 ~; 14 |; 39 &)
% ( 26 <=>; 233 =>; 0 <=; 0 <~>)
% Maximal formula depth : 20 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 209 ( 196 !; 13 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ( ( ~ neq(V,nil)
| ! [Y] :
( ssItem(Y)
=> ! [Z] :
( ssList(Z)
=> ( cons(Y,nil) != W
| app(Z,cons(Y,nil)) != X ) ) )
| singletonP(U) )
& ( ~ neq(V,nil)
| neq(X,nil) ) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------