TPTP Problem File: SWC253+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC253+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_pst_singleton_ne_x_head2
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_pst_singleton_ne_x_head2 [Wei00]
% Status : Theorem
% Rating : 0.64 v9.0.0, 0.61 v8.2.0, 0.67 v8.1.0, 0.61 v7.5.0, 0.72 v7.4.0, 0.60 v7.3.0, 0.66 v7.1.0, 0.65 v7.0.0, 0.63 v6.4.0, 0.69 v6.3.0, 0.67 v6.2.0, 0.72 v6.1.0, 0.80 v6.0.0, 0.78 v5.5.0, 0.81 v5.4.0, 0.82 v5.3.0, 0.85 v5.2.0, 0.75 v5.1.0, 0.76 v5.0.0, 0.83 v4.1.0, 0.87 v4.0.0, 0.88 v3.7.0, 0.90 v3.5.0, 0.89 v3.3.0, 0.86 v3.2.0, 0.91 v3.1.0, 1.00 v2.7.0, 0.67 v2.6.0, 0.83 v2.5.0, 1.00 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 410 ( 76 equ)
% Maximal formula atoms : 16 ( 4 avg)
% Number of connectives : 343 ( 29 ~; 13 |; 44 &)
% ( 26 <=>; 231 =>; 0 <=; 0 <~>)
% Maximal formula depth : 21 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 209 ( 194 !; 15 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ( ( ~ neq(V,nil)
| ? [Y] :
( ssList(Y)
& X != Y
& ? [Z] :
( ssList(Z)
& tl(X) = Z
& app(W,Z) = Y
& neq(nil,X) ) )
| singletonP(U) )
& ( ~ neq(V,nil)
| neq(X,nil) ) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------