TPTP Problem File: SWC240-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC240-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_pst_pivoted3_x_pst_equal3
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.30 v8.2.0, 0.33 v8.1.0, 0.32 v7.5.0, 0.53 v7.4.0, 0.47 v7.3.0, 0.50 v7.1.0, 0.33 v7.0.0, 0.53 v6.4.0, 0.47 v6.3.0, 0.55 v6.2.0, 0.60 v6.1.0, 0.64 v6.0.0, 0.80 v5.5.0, 0.85 v5.3.0, 0.89 v5.2.0, 0.81 v5.1.0, 0.82 v5.0.0, 0.79 v4.1.0, 0.77 v4.0.1, 0.73 v3.7.0, 0.60 v3.5.0, 0.73 v3.4.0, 0.75 v3.3.0, 0.71 v3.2.0, 0.77 v3.1.0, 0.64 v2.7.0, 0.67 v2.6.0, 0.78 v2.5.0, 0.89 v2.4.0
% Syntax : Number of clauses : 199 ( 62 unt; 33 nHn; 156 RR)
% Number of literals : 640 ( 107 equ; 422 neg)
% Maximal clause size : 10 ( 3 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 55 ( 55 usr; 8 con; 0-3 aty)
% Number of variables : 342 ( 49 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created by CNF conversion from SWC240+1
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001-0.ax').
%--------------------------------------------------------------------------
cnf(co1_1,negated_conjecture,
ssList(sk1) ).
cnf(co1_2,negated_conjecture,
ssList(sk2) ).
cnf(co1_3,negated_conjecture,
ssList(sk3) ).
cnf(co1_4,negated_conjecture,
ssList(sk4) ).
cnf(co1_5,negated_conjecture,
sk2 = sk4 ).
cnf(co1_6,negated_conjecture,
sk1 = sk3 ).
cnf(co1_7,negated_conjecture,
nil != sk1 ).
cnf(co1_8,negated_conjecture,
( ~ ssItem(A)
| ~ ssList(B)
| ~ ssList(C)
| app(app(B,cons(A,nil)),C) != sk1
| ssItem(sk5(C,B,A)) ) ).
cnf(co1_9,negated_conjecture,
( ~ ssItem(A)
| ~ ssList(B)
| ~ ssList(C)
| app(app(B,cons(A,nil)),C) != sk1
| memberP(B,sk5(C,B,A)) ) ).
cnf(co1_10,negated_conjecture,
( ~ ssItem(A)
| ~ ssList(B)
| ~ ssList(C)
| app(app(B,cons(A,nil)),C) != sk1
| memberP(C,sk5(C,B,A)) ) ).
cnf(co1_11,negated_conjecture,
( ~ ssItem(A)
| ~ ssList(B)
| ~ ssList(C)
| app(app(B,cons(A,nil)),C) != sk1
| lt(A,sk5(C,B,A)) ) ).
cnf(co1_12,negated_conjecture,
( ~ ssItem(A)
| ~ ssList(B)
| ~ ssList(C)
| app(app(B,cons(A,nil)),C) != sk1
| ~ leq(A,sk5(C,B,A)) ) ).
cnf(co1_13,negated_conjecture,
ssItem(sk6) ).
cnf(co1_14,negated_conjecture,
( ~ ssItem(A)
| sk6 = A
| ~ memberP(sk3,A) ) ).
%--------------------------------------------------------------------------