TPTP Problem File: SWC234+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC234+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_pst_pivoted2_x_run_eq_front2
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_pst_pivoted2_x_run_eq_front2 [Wei00]
% Status : Theorem
% Rating : 0.70 v9.0.0, 0.69 v8.2.0, 0.72 v7.5.0, 0.78 v7.4.0, 0.73 v7.3.0, 0.76 v7.1.0, 0.74 v7.0.0, 0.80 v6.4.0, 0.77 v6.3.0, 0.75 v6.2.0, 0.84 v6.1.0, 0.87 v6.0.0, 0.83 v5.5.0, 0.81 v5.4.0, 0.82 v5.3.0, 0.89 v5.2.0, 0.80 v5.1.0, 0.86 v5.0.0, 0.88 v4.1.0, 0.87 v4.0.1, 0.91 v4.0.0, 0.92 v3.7.0, 0.85 v3.5.0, 0.89 v3.4.0, 0.84 v3.3.0, 0.71 v3.2.0, 0.82 v3.1.0, 0.78 v2.7.0, 0.83 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 420 ( 80 equ)
% Maximal formula atoms : 26 ( 4 avg)
% Number of connectives : 359 ( 35 ~; 21 |; 47 &)
% ( 26 <=>; 230 =>; 0 <=; 0 <~>)
% Maximal formula depth : 26 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 215 ( 196 !; 19 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ~ ssList(X)
| V != X
| U != W
| nil = U
| ? [Y] :
( ssItem(Y)
& ? [Z] :
( ssList(Z)
& ? [X1] :
( ssList(X1)
& app(app(Z,cons(Y,nil)),X1) = U
& ! [X2] :
( ~ ssItem(X2)
| ~ memberP(Z,X2)
| ~ memberP(X1,X2)
| ~ leq(Y,X2)
| lt(Y,X2) ) ) ) )
| ! [X3] :
( ~ ssList(X3)
| app(W,X3) != X
| ~ equalelemsP(W)
| ? [X4] :
( ssItem(X4)
& ? [X5] :
( ssList(X5)
& app(cons(X4,nil),X5) = X3
& ? [X6] :
( ssList(X6)
& app(X6,cons(X4,nil)) = W ) ) ) )
| ( nil != X
& nil = W ) ) ) ) ) ).
%--------------------------------------------------------------------------