TPTP Problem File: SWC213+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC213+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_pst_not_nil_ne_x_run_eq_max2
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_pst_not_nil_ne_x_run_eq_max2 [Wei00]
% Status : Theorem
% Rating : 0.24 v9.0.0, 0.25 v8.2.0, 0.22 v8.1.0, 0.19 v7.5.0, 0.22 v7.4.0, 0.20 v7.3.0, 0.17 v7.2.0, 0.14 v7.1.0, 0.22 v7.0.0, 0.17 v6.4.0, 0.19 v6.3.0, 0.17 v6.2.0, 0.24 v6.1.0, 0.17 v6.0.0, 0.13 v5.5.0, 0.19 v5.4.0, 0.21 v5.3.0, 0.33 v5.2.0, 0.30 v5.1.0, 0.29 v5.0.0, 0.25 v4.1.0, 0.26 v4.0.1, 0.30 v4.0.0, 0.29 v3.7.0, 0.25 v3.5.0, 0.21 v3.3.0, 0.07 v3.2.0, 0.09 v3.1.0, 0.11 v2.7.0, 0.17 v2.5.0, 0.00 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 418 ( 80 equ)
% Maximal formula atoms : 24 ( 4 avg)
% Number of connectives : 352 ( 30 ~; 16 |; 47 &)
% ( 26 <=>; 233 =>; 0 <=; 0 <~>)
% Maximal formula depth : 27 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 215 ( 196 !; 19 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ~ neq(V,nil)
| ! [Y] :
( ssList(Y)
=> ! [Z] :
( ssList(Z)
=> ( app(app(Y,W),Z) != X
| ~ equalelemsP(W)
| ? [X1] :
( ssItem(X1)
& ? [X2] :
( ssList(X2)
& app(X2,cons(X1,nil)) = Y
& ? [X3] :
( ssList(X3)
& app(cons(X1,nil),X3) = W ) ) )
| ? [X4] :
( ssItem(X4)
& ? [X5] :
( ssList(X5)
& app(cons(X4,nil),X5) = Z
& ? [X6] :
( ssList(X6)
& app(X6,cons(X4,nil)) = W ) ) ) ) ) )
| neq(U,nil)
| ( nil != X
& nil = W ) ) ) ) ) ) ).
%--------------------------------------------------------------------------