TPTP Problem File: SWC202+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC202+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_pst_equal3_x_run_eq_max2
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_pst_equal3_x_run_eq_max2 [Wei00]
% Status : Theorem
% Rating : 1.00 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 420 ( 81 equ)
% Maximal formula atoms : 26 ( 4 avg)
% Number of connectives : 354 ( 30 ~; 16 |; 48 &)
% ( 26 <=>; 234 =>; 0 <=; 0 <~>)
% Maximal formula depth : 27 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 217 ( 197 !; 20 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ? [Y] :
( ssItem(Y)
& ! [Z] :
( ssItem(Z)
=> ( ~ memberP(U,Z)
| Y = Z ) ) )
| ! [X1] :
( ssList(X1)
=> ! [X2] :
( ssList(X2)
=> ( app(app(X1,W),X2) != X
| ~ equalelemsP(W)
| ? [X3] :
( ssItem(X3)
& ? [X4] :
( ssList(X4)
& app(X4,cons(X3,nil)) = X1
& ? [X5] :
( ssList(X5)
& app(cons(X3,nil),X5) = W ) ) )
| ? [X6] :
( ssItem(X6)
& ? [X7] :
( ssList(X7)
& app(cons(X6,nil),X7) = X2
& ? [X8] :
( ssList(X8)
& app(X8,cons(X6,nil)) = W ) ) ) ) ) )
| ( nil != X
& nil = W ) ) ) ) ) ) ).
%--------------------------------------------------------------------------