TPTP Problem File: SWC196+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC196+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_pst_equal2_x_run_eq_front2
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_pst_equal2_x_run_eq_front2 [Wei00]
% Status : Theorem
% Rating : 1.00 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 417 ( 80 equ)
% Maximal formula atoms : 23 ( 4 avg)
% Number of connectives : 351 ( 30 ~; 15 |; 43 &)
% ( 26 <=>; 237 =>; 0 <=; 0 <~>)
% Maximal formula depth : 25 ( 7 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 216 ( 200 !; 16 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ! [Y] :
( ssList(Y)
=> ( app(W,Y) != X
| ~ equalelemsP(W)
| ? [Z] :
( ssItem(Z)
& ? [X1] :
( ssList(X1)
& app(cons(Z,nil),X1) = Y
& ? [X2] :
( ssList(X2)
& app(X2,cons(Z,nil)) = W ) ) ) ) )
| ! [X3] :
( ssItem(X3)
=> ! [X4] :
( ssItem(X4)
=> ! [X5] :
( ssList(X5)
=> ! [X6] :
( ssList(X6)
=> ! [X7] :
( ssList(X7)
=> ( app(app(app(app(X5,cons(X3,nil)),X7),cons(X4,nil)),X6) != U
| X3 = X4 ) ) ) ) ) )
| ( nil != X
& nil = W ) ) ) ) ) ) ).
%--------------------------------------------------------------------------