TPTP Problem File: SWC188+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC188+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_pst_equal1_x_minimal
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_pst_equal1_x_minimal [Wei00]
% Status : Theorem
% Rating : 0.64 v8.2.0, 0.61 v8.1.0, 0.64 v7.5.0, 0.69 v7.4.0, 0.57 v7.3.0, 0.59 v7.1.0, 0.57 v7.0.0, 0.60 v6.4.0, 0.58 v6.2.0, 0.72 v6.1.0, 0.80 v6.0.0, 0.74 v5.5.0, 0.78 v5.4.0, 0.79 v5.3.0, 0.81 v5.2.0, 0.70 v5.1.0, 0.71 v5.0.0, 0.75 v4.1.0, 0.74 v4.0.1, 0.83 v3.7.0, 0.80 v3.5.0, 0.79 v3.2.0, 0.82 v3.1.0, 0.89 v2.7.0, 0.83 v2.6.0, 1.00 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 415 ( 79 equ)
% Maximal formula atoms : 21 ( 4 avg)
% Number of connectives : 351 ( 32 ~; 15 |; 42 &)
% ( 26 <=>; 236 =>; 0 <=; 0 <~>)
% Maximal formula depth : 22 ( 7 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 213 ( 199 !; 14 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ! [Y] :
( ssItem(Y)
=> ! [Z] :
( ssItem(Z)
=> ! [X1] :
( ssList(X1)
=> ! [X2] :
( ssList(X2)
=> ( app(app(app(X1,cons(Y,nil)),cons(Z,nil)),X2) != U
| Y = Z ) ) ) ) )
| ( ! [X3] :
( ssItem(X3)
=> ( cons(X3,nil) != W
| ~ memberP(X,X3)
| ? [X4] :
( ssItem(X4)
& X3 != X4
& memberP(X,X4)
& leq(X4,X3) ) ) )
& ( nil != X
| nil != W ) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------