TPTP Problem File: SWC161+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC161+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_pst_cyc_sorted_x_run_strict_ord_max2
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_pst_cyc_sorted_x_run_strict_ord_max2 [Wei00]
% Status : Theorem
% Rating : 0.79 v9.0.0, 0.81 v8.1.0, 0.83 v7.5.0, 0.84 v7.4.0, 0.77 v7.3.0, 0.76 v7.1.0, 0.70 v7.0.0, 0.80 v6.4.0, 0.77 v6.3.0, 0.71 v6.2.0, 0.88 v6.1.0, 0.90 v6.0.0, 0.83 v5.5.0, 0.85 v5.4.0, 0.89 v5.3.0, 0.93 v5.2.0, 0.85 v5.1.0, 0.90 v5.0.0, 0.92 v4.1.0, 0.96 v3.7.0, 0.95 v3.3.0, 0.93 v3.2.0, 1.00 v2.6.0, 0.83 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 432 ( 81 equ)
% Maximal formula atoms : 38 ( 4 avg)
% Number of connectives : 372 ( 36 ~; 22 |; 53 &)
% ( 26 <=>; 235 =>; 0 <=; 0 <~>)
% Maximal formula depth : 30 ( 7 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 223 ( 202 !; 21 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ~ ssList(X)
| V != X
| U != W
| ! [Y] :
( ssList(Y)
=> ! [Z] :
( ~ ssList(Z)
| app(app(Y,W),Z) != X
| ~ strictorderedP(W)
| ? [X1] :
( ssItem(X1)
& ? [X2] :
( ssList(X2)
& app(X2,cons(X1,nil)) = Y
& ? [X3] :
( ssItem(X3)
& ? [X4] :
( ssList(X4)
& app(cons(X3,nil),X4) = W
& lt(X1,X3) ) ) ) )
| ? [X5] :
( ssItem(X5)
& ? [X6] :
( ssList(X6)
& app(cons(X5,nil),X6) = Z
& ? [X7] :
( ssItem(X7)
& ? [X8] :
( ssList(X8)
& app(X8,cons(X7,nil)) = W
& lt(X7,X5) ) ) ) ) ) )
| ! [X9] :
( ssItem(X9)
=> ! [X10] :
( ssItem(X10)
=> ! [X11] :
( ssList(X11)
=> ! [X12] :
( ssList(X12)
=> ! [X13] :
( ~ ssList(X13)
| app(app(app(app(X11,cons(X9,nil)),X12),cons(X10,nil)),X13) != U
| ~ leq(X10,X9)
| ( ! [X14] :
( ~ ssItem(X14)
| ~ memberP(X12,X14)
| ( leq(X9,X14)
& leq(X14,X10) ) )
& leq(X9,X10) ) ) ) ) ) )
| ( nil != X
& nil = W ) ) ) ) ) ).
%--------------------------------------------------------------------------