TPTP Problem File: SWC160-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC160-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_pst_cyc_sorted_x_run_strict_ord_front2
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.45 v9.0.0, 0.50 v8.2.0, 0.52 v8.1.0, 0.47 v7.5.0, 0.58 v7.4.0, 0.53 v7.3.0, 0.50 v7.1.0, 0.42 v7.0.0, 0.60 v6.3.0, 0.45 v6.2.0, 0.70 v6.1.0, 0.93 v6.0.0, 0.80 v5.5.0, 0.90 v5.4.0, 0.95 v5.3.0, 0.94 v5.0.0, 0.93 v4.1.0, 1.00 v4.0.1, 0.91 v3.7.0, 0.90 v3.5.0, 0.91 v3.4.0, 0.92 v3.3.0, 0.93 v3.2.0, 1.00 v2.4.0
% Syntax : Number of clauses : 206 ( 70 unt; 33 nHn; 163 RR)
% Number of literals : 636 ( 106 equ; 411 neg)
% Maximal clause size : 10 ( 3 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 60 ( 60 usr; 14 con; 0-2 aty)
% Number of variables : 330 ( 49 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created by CNF conversion from SWC160+1
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001-0.ax').
%--------------------------------------------------------------------------
cnf(co1_1,negated_conjecture,
ssList(sk1) ).
cnf(co1_2,negated_conjecture,
ssList(sk2) ).
cnf(co1_3,negated_conjecture,
ssList(sk3) ).
cnf(co1_4,negated_conjecture,
ssList(sk4) ).
cnf(co1_5,negated_conjecture,
sk2 = sk4 ).
cnf(co1_6,negated_conjecture,
sk1 = sk3 ).
cnf(co1_7,negated_conjecture,
ssList(sk5) ).
cnf(co1_8,negated_conjecture,
app(sk3,sk5) = sk4 ).
cnf(co1_9,negated_conjecture,
strictorderedP(sk3) ).
cnf(co1_10,negated_conjecture,
( ~ ssItem(A)
| ~ ssList(B)
| app(cons(A,nil),B) != sk5
| ~ ssItem(C)
| ~ ssList(D)
| app(D,cons(C,nil)) != sk3
| ~ lt(C,A) ) ).
cnf(co1_11,negated_conjecture,
ssItem(sk6) ).
cnf(co1_12,negated_conjecture,
ssItem(sk7) ).
cnf(co1_13,negated_conjecture,
ssList(sk8) ).
cnf(co1_14,negated_conjecture,
ssList(sk9) ).
cnf(co1_15,negated_conjecture,
ssList(sk10) ).
cnf(co1_16,negated_conjecture,
app(app(app(app(sk8,cons(sk6,nil)),sk9),cons(sk7,nil)),sk10) = sk1 ).
cnf(co1_17,negated_conjecture,
leq(sk7,sk6) ).
cnf(co1_18,negated_conjecture,
( ssItem(sk11)
| ~ leq(sk6,sk7) ) ).
cnf(co1_19,negated_conjecture,
( memberP(sk9,sk11)
| ~ leq(sk6,sk7) ) ).
cnf(co1_20,negated_conjecture,
( ~ leq(sk6,sk11)
| ~ leq(sk11,sk7)
| ~ leq(sk6,sk7) ) ).
cnf(co1_21,negated_conjecture,
( nil = sk4
| nil != sk3 ) ).
%--------------------------------------------------------------------------