TPTP Problem File: SWC160+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC160+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_pst_cyc_sorted_x_run_strict_ord_front2
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_pst_cyc_sorted_x_run_strict_ord_front2 [Wei00]
% Status : Theorem
% Rating : 0.79 v9.0.0, 0.81 v8.1.0, 0.83 v7.5.0, 0.84 v7.4.0, 0.77 v7.3.0, 0.76 v7.1.0, 0.70 v7.0.0, 0.80 v6.4.0, 0.77 v6.3.0, 0.71 v6.2.0, 0.88 v6.1.0, 0.90 v6.0.0, 0.83 v5.5.0, 0.85 v5.4.0, 0.89 v5.3.0, 0.93 v5.2.0, 0.90 v5.1.0, 0.95 v5.0.0, 0.92 v4.1.0, 0.96 v3.7.0, 0.95 v3.3.0, 0.93 v3.2.0, 1.00 v2.6.0, 0.83 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 424 ( 79 equ)
% Maximal formula atoms : 30 ( 4 avg)
% Number of connectives : 360 ( 32 ~; 17 |; 47 &)
% ( 26 <=>; 238 =>; 0 <=; 0 <~>)
% Maximal formula depth : 30 ( 7 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 218 ( 201 !; 17 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ! [Y] :
( ssList(Y)
=> ( app(W,Y) != X
| ~ strictorderedP(W)
| ? [Z] :
( ssItem(Z)
& ? [X1] :
( ssList(X1)
& app(cons(Z,nil),X1) = Y
& ? [X2] :
( ssItem(X2)
& ? [X3] :
( ssList(X3)
& app(X3,cons(X2,nil)) = W
& lt(X2,Z) ) ) ) ) ) )
| ! [X4] :
( ssItem(X4)
=> ! [X5] :
( ssItem(X5)
=> ! [X6] :
( ssList(X6)
=> ! [X7] :
( ssList(X7)
=> ! [X8] :
( ssList(X8)
=> ( app(app(app(app(X6,cons(X4,nil)),X7),cons(X5,nil)),X8) != U
| ~ leq(X5,X4)
| ( ! [X9] :
( ssItem(X9)
=> ( ~ memberP(X7,X9)
| ( leq(X4,X9)
& leq(X9,X5) ) ) )
& leq(X4,X5) ) ) ) ) ) ) )
| ( nil != X
& nil = W ) ) ) ) ) ) ).
%--------------------------------------------------------------------------