TPTP Problem File: SWC153-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC153-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_pst_cyc_sorted_x_pst_cyc_sorted
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.20 v9.0.0, 0.25 v8.2.0, 0.29 v8.1.0, 0.21 v7.5.0, 0.26 v7.4.0, 0.29 v7.3.0, 0.25 v7.1.0, 0.17 v7.0.0, 0.33 v6.4.0, 0.27 v6.2.0, 0.40 v6.1.0, 0.50 v5.5.0, 0.75 v5.3.0, 0.78 v5.2.0, 0.62 v5.1.0, 0.65 v5.0.0, 0.57 v4.1.0, 0.54 v4.0.1, 0.45 v4.0.0, 0.55 v3.7.0, 0.40 v3.5.0, 0.45 v3.4.0, 0.58 v3.3.0, 0.50 v3.2.0, 0.62 v3.1.0, 0.45 v2.7.0, 0.67 v2.5.0, 0.78 v2.4.0
% Syntax : Number of clauses : 204 ( 67 unt; 33 nHn; 161 RR)
% Number of literals : 652 ( 104 equ; 428 neg)
% Maximal clause size : 10 ( 3 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 59 ( 59 usr; 13 con; 0-2 aty)
% Number of variables : 343 ( 49 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created by CNF conversion from SWC153+1
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001-0.ax').
%--------------------------------------------------------------------------
cnf(co1_1,negated_conjecture,
ssList(sk1) ).
cnf(co1_2,negated_conjecture,
ssList(sk2) ).
cnf(co1_3,negated_conjecture,
ssList(sk3) ).
cnf(co1_4,negated_conjecture,
ssList(sk4) ).
cnf(co1_5,negated_conjecture,
sk4 = sk2 ).
cnf(co1_6,negated_conjecture,
sk3 = sk1 ).
cnf(co1_7,negated_conjecture,
( ~ ssItem(A)
| ~ ssItem(B)
| ~ ssList(C)
| ~ ssList(D)
| ~ ssList(E)
| app(app(app(app(C,cons(A,nil)),D),cons(B,nil)),E) != sk3
| ~ leq(B,A)
| leq(A,B) ) ).
cnf(co1_8,negated_conjecture,
( ~ ssItem(A)
| ~ ssItem(B)
| ~ ssList(C)
| ~ ssList(D)
| ~ ssList(E)
| app(app(app(app(C,cons(A,nil)),D),cons(B,nil)),E) != sk3
| ~ leq(B,A)
| ~ ssItem(F)
| ~ memberP(D,F)
| leq(A,F) ) ).
cnf(co1_9,negated_conjecture,
( ~ ssItem(A)
| ~ ssItem(B)
| ~ ssList(C)
| ~ ssList(D)
| ~ ssList(E)
| app(app(app(app(C,cons(A,nil)),D),cons(B,nil)),E) != sk3
| ~ leq(B,A)
| ~ ssItem(F)
| ~ memberP(D,F)
| leq(F,B) ) ).
cnf(co1_10,negated_conjecture,
ssItem(sk5) ).
cnf(co1_11,negated_conjecture,
ssItem(sk6) ).
cnf(co1_12,negated_conjecture,
ssList(sk7) ).
cnf(co1_13,negated_conjecture,
ssList(sk8) ).
cnf(co1_14,negated_conjecture,
ssList(sk9) ).
cnf(co1_15,negated_conjecture,
app(app(app(app(sk7,cons(sk5,nil)),sk8),cons(sk6,nil)),sk9) = sk1 ).
cnf(co1_16,negated_conjecture,
leq(sk6,sk5) ).
cnf(co1_17,negated_conjecture,
( ssItem(sk10)
| ~ leq(sk5,sk6) ) ).
cnf(co1_18,negated_conjecture,
( memberP(sk8,sk10)
| ~ leq(sk5,sk6) ) ).
cnf(co1_19,negated_conjecture,
( ~ leq(sk10,sk6)
| ~ leq(sk5,sk10)
| ~ leq(sk5,sk6) ) ).
%--------------------------------------------------------------------------