TPTP Problem File: SWC153+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC153+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_pst_cyc_sorted_x_pst_cyc_sorted
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_pst_cyc_sorted_x_pst_cyc_sorted [Wei00]
% Status : Theorem
% Rating : 0.30 v9.0.0, 0.36 v8.2.0, 0.39 v7.5.0, 0.44 v7.4.0, 0.27 v7.3.0, 0.41 v7.2.0, 0.38 v7.1.0, 0.39 v7.0.0, 0.30 v6.4.0, 0.35 v6.3.0, 0.42 v6.2.0, 0.48 v6.1.0, 0.53 v6.0.0, 0.43 v5.5.0, 0.63 v5.4.0, 0.64 v5.3.0, 0.63 v5.2.0, 0.50 v5.1.0, 0.52 v5.0.0, 0.54 v4.1.0, 0.52 v4.0.1, 0.57 v4.0.0, 0.58 v3.7.0, 0.60 v3.5.0, 0.63 v3.4.0, 0.58 v3.3.0, 0.43 v3.2.0, 0.45 v3.1.0, 0.56 v2.7.0, 0.50 v2.6.0, 0.83 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 424 ( 75 equ)
% Maximal formula atoms : 30 ( 4 avg)
% Number of connectives : 360 ( 32 ~; 16 |; 49 &)
% ( 26 <=>; 237 =>; 0 <=; 0 <~>)
% Maximal formula depth : 30 ( 7 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 219 ( 200 !; 19 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( X != V
| W != U
| ? [Y] :
( ssItem(Y)
& ? [Z] :
( ssItem(Z)
& ? [X1] :
( ssList(X1)
& ? [X2] :
( ssList(X2)
& ? [X3] :
( ssList(X3)
& app(app(app(app(X1,cons(Y,nil)),X2),cons(Z,nil)),X3) = W
& leq(Z,Y)
& ( ~ leq(Y,Z)
| ? [X4] :
( ssItem(X4)
& memberP(X2,X4)
& ( ~ leq(Y,X4)
| ~ leq(X4,Z) ) ) ) ) ) ) ) )
| ! [X5] :
( ssItem(X5)
=> ! [X6] :
( ssItem(X6)
=> ! [X7] :
( ssList(X7)
=> ! [X8] :
( ssList(X8)
=> ! [X9] :
( ssList(X9)
=> ( app(app(app(app(X7,cons(X5,nil)),X8),cons(X6,nil)),X9) != U
| ~ leq(X6,X5)
| ( ! [X10] :
( ssItem(X10)
=> ( ~ memberP(X8,X10)
| ( leq(X10,X6)
& leq(X5,X10) ) ) )
& leq(X5,X6) ) ) ) ) ) ) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------