TPTP Problem File: SWC124+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC124+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_ne_segment_x_run_ord_front2
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_ne_segment_x_run_ord_front2 [Wei00]
% Status : Theorem
% Rating : 0.33 v9.0.0, 0.36 v8.2.0, 0.33 v7.5.0, 0.41 v7.4.0, 0.23 v7.3.0, 0.34 v7.2.0, 0.31 v7.1.0, 0.30 v7.0.0, 0.33 v6.4.0, 0.42 v6.2.0, 0.52 v6.1.0, 0.60 v6.0.0, 0.57 v5.5.0, 0.63 v5.4.0, 0.57 v5.3.0, 0.63 v5.2.0, 0.55 v5.1.0, 0.57 v5.0.0, 0.58 v4.1.0, 0.52 v4.0.1, 0.57 v4.0.0, 0.54 v3.7.0, 0.55 v3.5.0, 0.53 v3.3.0, 0.36 v3.2.0, 0.27 v3.1.0, 0.44 v2.7.0, 0.67 v2.6.0, 0.50 v2.5.0, 0.33 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 415 ( 78 equ)
% Maximal formula atoms : 21 ( 4 avg)
% Number of connectives : 349 ( 30 ~; 15 |; 46 &)
% ( 26 <=>; 232 =>; 0 <=; 0 <~>)
% Maximal formula depth : 27 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 212 ( 195 !; 17 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ~ neq(V,nil)
| ! [Y] :
( ssList(Y)
=> ( app(W,Y) != X
| ~ totalorderedP(W)
| ? [Z] :
( ssItem(Z)
& ? [X1] :
( ssList(X1)
& app(cons(Z,nil),X1) = Y
& ? [X2] :
( ssItem(X2)
& ? [X3] :
( ssList(X3)
& app(X3,cons(X2,nil)) = W
& leq(X2,Z) ) ) ) ) ) )
| ( nil != X
& nil = W )
| ( neq(U,nil)
& segmentP(V,U) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------