TPTP Problem File: SWC121+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC121+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_ne_segment_x_ne_segment
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_ne_segment_x_ne_segment [Wei00]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.14 v8.2.0, 0.11 v8.1.0, 0.08 v7.5.0, 0.09 v7.4.0, 0.10 v7.1.0, 0.17 v7.0.0, 0.10 v6.4.0, 0.12 v6.2.0, 0.16 v6.1.0, 0.13 v6.0.0, 0.04 v5.4.0, 0.11 v5.3.0, 0.15 v5.2.0, 0.05 v5.0.0, 0.00 v4.1.0, 0.04 v4.0.1, 0.13 v4.0.0, 0.17 v3.7.0, 0.10 v3.5.0, 0.05 v3.4.0, 0.16 v3.3.0, 0.07 v3.2.0, 0.09 v3.1.0, 0.22 v2.7.0, 0.33 v2.5.0, 0.17 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 407 ( 73 equ)
% Maximal formula atoms : 13 ( 4 avg)
% Number of connectives : 341 ( 30 ~; 14 |; 40 &)
% ( 26 <=>; 231 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 207 ( 194 !; 13 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ( ( ~ neq(V,nil)
| ~ neq(W,nil)
| ~ segmentP(X,W)
| ( neq(U,nil)
& segmentP(V,U) ) )
& ( ~ neq(V,nil)
| neq(X,nil) ) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------