TPTP Problem File: SWC010-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC010-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_filter_some_x_del_max
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.15 v8.2.0, 0.19 v8.1.0, 0.16 v7.4.0, 0.18 v7.3.0, 0.17 v7.1.0, 0.08 v7.0.0, 0.20 v6.4.0, 0.13 v6.3.0, 0.09 v6.2.0, 0.30 v6.1.0, 0.43 v6.0.0, 0.30 v5.5.0, 0.55 v5.3.0, 0.50 v5.2.0, 0.44 v5.1.0, 0.47 v5.0.0, 0.43 v4.1.0, 0.46 v4.0.1, 0.45 v3.7.0, 0.30 v3.5.0, 0.36 v3.4.0, 0.42 v3.3.0, 0.29 v3.2.0, 0.31 v3.1.0, 0.27 v2.7.0, 0.42 v2.6.0, 0.44 v2.5.0, 0.33 v2.4.0
% Syntax : Number of clauses : 207 ( 60 unt; 40 nHn; 164 RR)
% Number of literals : 656 ( 110 equ; 422 neg)
% Maximal clause size : 10 ( 3 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 56 ( 56 usr; 10 con; 0-2 aty)
% Number of variables : 334 ( 49 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created by CNF conversion from SWC010+1
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001-0.ax').
%--------------------------------------------------------------------------
cnf(co1_1,negated_conjecture,
ssList(sk1) ).
cnf(co1_2,negated_conjecture,
ssList(sk2) ).
cnf(co1_3,negated_conjecture,
ssList(sk3) ).
cnf(co1_4,negated_conjecture,
ssList(sk4) ).
cnf(co1_5,negated_conjecture,
sk2 = sk4 ).
cnf(co1_6,negated_conjecture,
sk1 = sk3 ).
cnf(co1_7,negated_conjecture,
( neq(sk2,nil)
| neq(sk2,nil) ) ).
cnf(co1_8,negated_conjecture,
( neq(sk2,nil)
| ~ neq(sk4,nil) ) ).
cnf(co1_9,negated_conjecture,
( ~ ssItem(A)
| ~ ssList(B)
| ~ ssList(C)
| app(app(B,cons(A,nil)),C) != sk2
| app(B,C) != sk1
| neq(sk2,nil) ) ).
cnf(co1_10,negated_conjecture,
( ssItem(sk5)
| neq(sk2,nil) ) ).
cnf(co1_11,negated_conjecture,
( ssList(sk6)
| neq(sk2,nil) ) ).
cnf(co1_12,negated_conjecture,
( ssList(sk7)
| neq(sk2,nil) ) ).
cnf(co1_13,negated_conjecture,
( app(app(sk6,cons(sk5,nil)),sk7) = sk4
| neq(sk2,nil) ) ).
cnf(co1_14,negated_conjecture,
( app(sk6,sk7) = sk3
| neq(sk2,nil) ) ).
cnf(co1_15,negated_conjecture,
( ~ ssItem(A)
| sk5 = A
| ~ memberP(sk4,A)
| ~ geq(A,sk5)
| neq(sk2,nil) ) ).
cnf(co1_16,negated_conjecture,
( ~ ssItem(A)
| ~ ssList(B)
| ~ ssList(C)
| app(app(B,cons(A,nil)),C) != sk2
| app(B,C) != sk1
| ~ neq(sk4,nil) ) ).
cnf(co1_17,negated_conjecture,
( ssItem(sk5)
| ~ neq(sk4,nil) ) ).
cnf(co1_18,negated_conjecture,
( ssList(sk6)
| ~ neq(sk4,nil) ) ).
cnf(co1_19,negated_conjecture,
( ssList(sk7)
| ~ neq(sk4,nil) ) ).
cnf(co1_20,negated_conjecture,
( app(app(sk6,cons(sk5,nil)),sk7) = sk4
| ~ neq(sk4,nil) ) ).
cnf(co1_21,negated_conjecture,
( app(sk6,sk7) = sk3
| ~ neq(sk4,nil) ) ).
cnf(co1_22,negated_conjecture,
( ~ ssItem(A)
| sk5 = A
| ~ memberP(sk4,A)
| ~ geq(A,sk5)
| ~ neq(sk4,nil) ) ).
%--------------------------------------------------------------------------