TPTP Problem File: SWC010+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SWC010+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Software Creation
% Problem : cond_filter_some_x_del_max
% Version : [Wei00] axioms.
% English : Find components in a software library that match a given target
% specification given in first-order logic. The components are
% specified in first-order logic as well. The problem represents
% a test of one library module specification against a target
% specification.
% Refs : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
% : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source : [Wei00]
% Names : cond_filter_some_x_del_max [Wei00]
% Status : Theorem
% Rating : 0.30 v9.0.0, 0.36 v7.5.0, 0.38 v7.4.0, 0.23 v7.3.0, 0.34 v7.1.0, 0.39 v7.0.0, 0.30 v6.4.0, 0.35 v6.3.0, 0.42 v6.2.0, 0.48 v6.1.0, 0.53 v6.0.0, 0.52 v5.5.0, 0.59 v5.4.0, 0.61 v5.3.0, 0.63 v5.2.0, 0.50 v5.1.0, 0.52 v5.0.0, 0.54 v4.1.0, 0.52 v4.0.1, 0.48 v4.0.0, 0.46 v3.7.0, 0.45 v3.5.0, 0.47 v3.4.0, 0.53 v3.3.0, 0.43 v3.2.0, 0.45 v3.1.0, 0.56 v2.7.0, 0.50 v2.6.0, 0.67 v2.4.0
% Syntax : Number of formulae : 96 ( 9 unt; 0 def)
% Number of atoms : 417 ( 78 equ)
% Maximal formula atoms : 23 ( 4 avg)
% Number of connectives : 352 ( 31 ~; 15 |; 46 &)
% ( 26 <=>; 234 =>; 0 <=; 0 <~>)
% Maximal formula depth : 26 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 214 ( 197 !; 17 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ssList(X)
=> ( V != X
| U != W
| ( ( ~ neq(V,nil)
| ? [Y] :
( ssItem(Y)
& ? [Z] :
( ssList(Z)
& ? [X1] :
( ssList(X1)
& app(app(Z,cons(Y,nil)),X1) = V
& app(Z,X1) = U ) ) )
| ! [X2] :
( ssItem(X2)
=> ! [X3] :
( ssList(X3)
=> ! [X4] :
( ssList(X4)
=> ( app(app(X3,cons(X2,nil)),X4) != X
| app(X3,X4) != W
| ? [X5] :
( ssItem(X5)
& X2 != X5
& memberP(X,X5)
& geq(X5,X2) ) ) ) ) ) )
& ( ~ neq(V,nil)
| neq(X,nil) ) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------